11R32, Galois theory — 2 results found.
C. R. Math. Rep. Acad. Sci. Canada Vol. 27, (2), 2005 pp. 48–53
David Brink (Received: 2005/01/21) C. R. Math. Rep. Acad. Sci. Canada Vol. 19 (2) 1997, pp. 51–57
C. Helou (Received: 1997/03/07)

Mathematical Reports - Comptes rendus mathématiques
of the Academy of Science | de l'Académie des sciences
It is investigated when a cyclic \(p\)-class field of an imaginary quadratic number field can be embedded in an infinite pro-cyclic \(p\)-extension.
On donne des conditions pour qu’un \(p\)-corps de classes cyclique d’un corps de nombres quadratique imaginaire soit plongeable dans une \(p\)-extension pro-cyclique infinie.