19B99, None of the above; but in this section — 1 results found.
C. R. Math. Rep. Acad. Sci. Canada Vol. 44 (1) 2022, pp. 1-15
George A. Elliott (Received: 2021/09/16, Revised: 2021/12/19)

Mathematical Reports - Comptes rendus mathématiques
of the Academy of Science | de l'Académie des sciences
It is shown that for a unital C*-algebra, what is sometimes referred to as the Elliott invariant—loosely speaking, K-theory and traces— i.e., the order-unit K\(_0\)-group, the K\(_1\)-group, and the trace simplex, paired in the natural way with K\(_0\), can be expressed purely in terms of K-theory, with the trace simplex and its pairing with K\(_0\) recoverable in a simple way (using polar decomposition) from algebraic K\(_1\), defined as in the purely algebraic context using invertible elements rather than just unitaries.
L’invariant naïf d’Elliott, qui est à la base de la classification complète récente d’une énorme classe de C*-algèbres simples (celles qui sont de dimension nucléaire finie, qui sont séparables, et qui satisfont à l’UCT), peut s’exprimer entièrement dans le cadre de K-théorie algébrique.