Mathematical Reports - Comptes rendus mathématiques

of the Academy of Science | de l'Académie des sciences

  • Home
  • Articles
  • News
  • Editorial Board
  • General Information
    • General Information
    • Preparation of Manuscripts
    • Subscription Information
    • FAQ
    • Help

January 31, 2021 By

A Classification of Finite Simple Amenable Z-stable C*-algebras, I: C*-algebras with Generalized Tracial Rank One

C. R. Math. Rep. Acad. Sci. Canada Vol. 42 (3) 2020, pp. 63-450

September 30, 2020

Guihua Gong, Department of Mathematics, Hebei Normal University, Shijiazhuang, Hebei 050016, China and Department of Mathematics, University of Puerto Rico, Rio Piedras, PR 00936, USA; e-mail: ghgong@gmail.com

Huaxin Lin, Department of Mathematics, East China Normal University, Shanghai 200062, China and (Current) Department of Mathematics, University of Oregon, Eugene, Oregon, 97402, USA; e-mail: hlin@uoregon.edu

Zhuang Niu, Department of Mathematics, University of Wyoming, Laramie, WY, USA, 82071; e-mail: zniu@uwyo.edu

Abstract/Résumé:

A class of C*-algebras, to be called those of generalized tracial rank one, is introduced. A second class of unital simple separable amenable C*-algebras, those whose tensor products with UHF-algebras of infinite type are in the first class, to be referred to as those of rational generalized tracial rank one, is proved to exhaust all possible values of the Elliott invariant for unital finite simple separable amenable \({\cal Z}\)-stable C*-algebras. A number of results toward the classification of the second class are presented including an isomorphism theorem for a special sub-class of the first class, leading to the general classification of all unital simple s with rational generalized tracial rank one in Part II.

Dans cet article et le prochain, on donne une classification complète, au moyen de l’invariant d’Elliott, d’une sous-classe de la classe des C*-algèbres simples, moyennables, séparables, à élément unité, absorbant l’algèbre de Jiang-Su, et satisfaisant au UCT, qui épuise l’ensemble des valeurs possibles de l’invariant pour cette class. La partie I réalise une grande partie de ce projet, et la partie II l’achève.

Keywords: Classification of simple C*-algebras
AMS Subject Classification: General theory of $C^*$-algebras, Classifications of $C^*$-algebras; factors, K-theory and operator algebras -including cyclic theory 46L05, 46L35, 46L80

[This journal is open access except for the current year and the preceding 5 years]

PDF(click to download): A Classification of Finite Simple Amenable Z-stable C*-algebras, I: C*-algebras with Generalized Tracial Rank One

Filed Under: Featured

 Volume / Issue

Most used Keywords

algebraic number theory approximation property automorphisms Bessel functions Boson-fermion correspondence C*-algebra Carmichael number center problem Chebyshev transform classification Classification of simple C*-algebras composition operators continued fractions Cuntz Semigroup elliptic curves fixed point Fourier transform function fields. functoriality general relativity generic property ideals indefinite inner product inductive limits of sub-homogeneous C*- algebras Irrational rotation algebra J-Hermitian matrix K-theory Kahler manifolds L-functions maximal ideal space nonexpansive mapping numerical range orthogonal polynomials Predual space prime number property SP Renormalization rotation algebras Salem number semi-reciprocal polynomials tracially approximate splitting interval algebras unbounded traces uniqueness Weak Markov set Whitney problems

Most used AMS

05C05 11A07 11A55 11B37 11B68 11D09 11D25 11D41 11E04 11F11 11F66 11F67 11G05 11R09 11R11 13B25 14J26 14M25 14P10 17B37 17B67 19K14 19K56 26A51 30C15 30H05 35B 37E10 37E20 37F25 39B72 42C05 43A07 46B20 46L05 46L35 46L40 46L55 46L80 47H10 53B25 53C55 54C60 60F10 83C05

Be notified of new issues

Copyright © 2023 · The Royal Society of Canada | La Société royale du Canada · Log in
ISSN: 2816-5810 (Online)