C. R. Math. Rep. Acad. Sci. Canada Vol. 42 (4) 2020, pp. 451-539
December 31, 2020
Guihua Gong, Department of Mathematics, Hebei Normal University, Shijiazhuang, Hebei 050016, China
and Department of Mathematics, University of Puerto Rico, Rio Piedras, PR 00936, USA; e-mail: ghgong@gmail.comHuaxin Lin, Department of Mathematics, East China Normal University, Shanghai 200062, China and
(Current) Department of Mathematics, University of Oregon, Eugene, Oregon, 97402, USA; e-mail: hlin@uoregon.eduZhuang Niu, Department of Mathematics, University of Wyoming, Laramie, WY, USA, 82071; e-mail: zniu@uwyo.edu,
Abstract/Résumé:
A classification theorem is obtained for a class of unital simple separable amenable \({\cal Z}\)-stable C*-algebras which exhausts all possible values of the Elliott invariant for unital stably finite simple separable amenable \({\cal Z}\)-stable C*-algebras. Moreover, it contains all unital simple separable amenable C*-algebras which satisfy the UCT and have finite rational tracial rank.
Dans cet article et le précédent on donne une classification complète, au moyen de l’invariant d’Elliott, d’une sous-classe de la classe des C*-algèbres simples, moyennables, séparables, à élément unité, absorbant l’algèbre de Jiang-Su, et satisfaisant au UCT, qui épuise l’ensemble des valeurs possibles de l’invariant pour cette class. La partie I réalise une grande partie de ce projet, et la partie II l’achève.
AMS Subject Classification: General theory of $C^*$-algebras, Classifications of $C^*$-algebras; factors, K-theory and operator algebras -including cyclic theory 46L05, 46L35, 46L80
[This journal is open access except for the current year and the preceding 5 years]