C. R. Math. Rep. Acad. Sci. Canada Vol. 30 (4) 2009, pp. 97–105
December 30, 2008
D. Kinzebulatov, Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4; email: dkinzl@math.toronto.edu
L. Shartser, Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4; email: shartl@math.toronto.edu
Abstract/Résumé:
Given an analytic set \(X\) and \(x \in X\), we show that \(X\) admits (in a relatively compact neighbourhood of \(x\)) a modified Gagliardo–Nirenberg inequality, depending on a certain exponent \(s \geq 1\) (\(s=1\) in case of a manifold). The infimum of the set of all such \(s\) characterizes, in a sense, the type of singularity at \(x\).
Etant donné un ensemble analytique \(X\) et \(x \in X\), nous montrons que \(X\) admet (dans un voisinage relativement compact de \(x\)) une inégalité de Gagliardo–Nirenberg modifiée, en fonction d’un certain exposant \(s \geq 1\) (\(s=1\) dans le cas d’une variété). La borne inférieure de l’ensemble de tous ces \(s\) caractérise, en un sens, le type de singularité en \(x\).
[AMS Subject Classification: Local singularities 32S05
[This journal is open access except for the current year and the preceding 5 years]