C. R. Math. Rep. Acad. Sci. Canada Vol. 35 (2) 2013, pp. 70–76
June 30, 2013
Jan Cameron, Department of Mathematics, Vassar College, Poughkeepsie, NY 12604, USA; e-mail: jacameron@vassar.edu
Abstract/Résumé:
In this note we show that Kadison’s similarity problem for $C^*$-algebras is equivalent to a problem in perturbation theory: must close $C^*$-algebras have close commutants?
Dans cette note, nous montrons que le problème de similarité de Kadison est équivalent à la question suivante en théorie de la perturbation: les commutants de deux $C^*$-algèbres proches sont-ils nécessairement proches?
AMS Subject Classification: General theory of $C^*$-algebras 46L05
[This journal is open access except for the current year and the preceding 5 years]