C. R. Math. Rep. Acad. Sci. Canada Vol. 31 (3) 2009, pp. 76–86
September 30, 2009
Xiaochun Fang, Department of Mathematics, Tongji University, Shanghai 200092, China; email: xfang@tongji.edu.cn
Abstract/Résumé:
We introduce the notion of quasi-free action of a locally compact abelian group on a graph \({\rm C}^*\)-algebra of a row-finite directed graph, with respect to a labeling of the edges of the graph by elements of the dual group, which we shall call a labeling map. A sufficient condition for AF embedding is given: if the row-finite directed graph is constructed by possibly attaching 1-loops to a row-finite directed graph each weakly connected component of which is a rooted (possibly infinite) directed tree, and the labeling map is almost proper, then the crossed product can be embedded into an AF algebra.
On introduit la notion d’action quasi-libre d’un groupe localement compact abélien sur la \({\rm C}^*\)-algèbre d’un graphe dirigé dont les rangs sont finis, par rapport à un choix d’étiquettes pour les bords du graphe par éléments du groupe dual, qu’on appellera une application d’étiquette. Une condition suffissante pour que la \({\rm C}^*\)-algèbre soit enfoncée dans une \({\rm C}\)-algèbre AF (c’est-à-dire, limite de \({\rm C}^*\)-algèbres de dimesion finie), est donnée, dans laquelle interviennent et le graphe lui-même et l’application d’étiquette.
AMS Subject Classification: General theory of $C^*$-algebras 46L05
[This journal is open access except for the current year and the preceding 5 years]