Mathematical Reports - Comptes rendus mathématiques

of the Academy of Science | de l'Académie des sciences

  • Home
  • Articles
  • News
  • Editorial Board
  • General Information
    • General Information
    • Preparation of Manuscripts
    • Subscription Information
    • FAQ
    • Help

April 10, 2015 By

Biextensions and $1$-motives

C. R. Math. Rep. Acad. Sci. Canada Vol. 27, (3), 2005 pp. 65–71

September 30, 2005

Cristiana Bertolin, D-Math HG G 33.4, ETH-Zentrum, CH-8092 Z ̈urich, Switzerland; email: bertolin@math.ethz.ch

Abstract/Résumé:

Let \(S\) be a scheme and let \(G_i\) (for \(i = 1,2,3\)) be an extension of an abelian \(S\)-scheme \(A_i\) by a \(S\)-torus \(Y_i (1)\). The first result of this note is that the category of biextensions of \((G_1,G_2)\) by \(G_3\) is equivalent to the category of biextensions of the underlying abelian \(S\)-schemes \((A_1,A_2)\) by the underlying \(S\)-torus \(Y_3(1)\). Using this theorem we define the notion of biextension of \(1\)-motives by \(1\)-motives. If \({\mathcal{M}}(S)\) denotes the conjectural Tannakian category generated by \(1\)-motives over \(S\) (in a geometrical sense), as a candidate for the morphisms of \({\mathcal{M}}(S)\) from the tensor product of two \(1\)-motives \(M_1 \otimes M_2\) to another \(1\)-motive \(M_3\), we propose the isomorphism classes of biextensions of \((M_1,M_2)\) by \(M_3\). This definition is compatible with the realizations of \(1\)-motives. Moreover, generalizing this definition we obtain, modulo isogeny, the geometrical notion of morphism of \({\mathcal{M}}(S)\) from a finite tensor product of \(1\)-motives to another \(1\)-motive.

Soit \(S\) un schéma. On définit la notion de biextension de \(1\)-motifs par des \(1\)-motifs. De plus, si \({\mathcal{M}}(S)\) désigne la catégorie Tannakienne engendrée par les \(1\)-motifs sur \(S\) (en un sense géométrique), on définit les morphismes de \({\mathcal{M}}(S)\) du produit tensoriel de deux \(1\)-motifs \(M_1 \otimes M_2\) vers un \(1\)-motif \(M_3,\) comme étant la classe d’isomorphismes des biextensions \((M_1,M_2)\) par \(M_3\). En généralisant cette définition, on obtient, modulo isogénies, la notion de morphisme de \({\mathcal{M}}(S)\) d’un produit tensoriel fini de \(1\)-motifs vers un autre \(1\)-motif.

Keywords: 1-motives, biextensions, morphisms, tensor products
AMS Subject Classification: Epimorphisms; monomorphisms; special classes of morphisms; null morphisms 18A20

[This journal is open access except for the current year and the preceding 5 years]

PDF(click to download): Biextensions and $1$-motives

Filed Under: Uncategorized

 Volume / Issue

Most used Keywords

algebraic number theory approximation property automorphisms Bessel functions Boson-fermion correspondence C*-algebra Carmichael number center problem Chebyshev transform classification Classification of simple C*-algebras composition operators continued fractions Cuntz Semigroup elliptic curves fixed point Fourier transform function fields. functoriality general relativity generic property ideals indefinite inner product inductive limits of sub-homogeneous C*- algebras Irrational rotation algebra J-Hermitian matrix K-theory Kahler manifolds L-functions maximal ideal space nonexpansive mapping numerical range orthogonal polynomials Predual space prime number property SP Renormalization rotation algebras Salem number semi-reciprocal polynomials tracially approximate splitting interval algebras unbounded traces uniqueness Weak Markov set Whitney problems

Most used AMS

05C05 11A07 11A55 11B37 11B68 11D09 11D25 11D41 11E04 11F11 11F66 11F67 11G05 11R09 11R11 13B25 14J26 14M25 14P10 17B37 17B67 19K14 19K56 26A51 30C15 30H05 35B 37E10 37E20 37F25 39B72 42C05 43A07 46B20 46L05 46L35 46L40 46L55 46L80 47H10 53B25 53C55 54C60 60F10 83C05

Be notified of new issues

Copyright © 2023 · The Royal Society of Canada | La Société royale du Canada · Log in
ISSN: 2816-5810 (Online)