C. R. Math. Rep. Acad. Sci. Canada Vol. 40 (4) 2018, pp. 104-133
December 31, 2018
George A. Elliott, FRSC,Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4; e-mail: elliott@math.toronto.edu,
Qingzhai Fan,Department of Mathematics, Shanghai Maritime University, Shanghai, China 201306; e-mail: fanqingzhai@fudan.edu.cn,qzfan@shmtu.edu.cn
Xiaochun Fang,Department of Mathematics, Tongji University, Shangha, China 200092; e-mail: xfang@mail.tongji.edu.cn
Abstract/Résumé:
We show that the following properties of the \({\rm C^*}\)-algebras in a class \(\Omega\) are inherited by simple unital \({\rm C^*}\)-algebras in the class \({\rm TA}\Omega\): \((1)\) \(\beta\)-comparison (\(1\leq \beta < \infty\)), \((2)\) \(n\)-comparison, \((3)\) trace \(\mathcal{Z}\)- absorption, \((4)\) \(m\)-almost divisibility, \((5)\) \((n,m) ~(m\neq 0)\) comparison, and \((6)\) tracial approximate divisibility. As an application, every unital simple \({\rm C^*}\)-algebra with tracial topological rank at most \(k\) has the property of \(k\)-comparison. Also as an application, let \(A\) be an infinite-dimensional simple unital \({\rm C^*}\)-algebra such that \(A\) has one of the above-listed properties. Suppose that \(\alpha: G\to {\rm Aut}(A)\) is an action of a finite group \(G\) on \(A\) which has the tracial Rokhlin property. Then the crossed product \({\rm C^*}\)-algebra \({\rm C^*}( G, A,\alpha)\) also has the property under consideration.
On considère plusieurs propriétés d’une C*-algèbre simple à élément unité qui sont héritées par approximation traciale. Comme application on démontre que ces propriétés sont aussi héritées par la C*-algèbre produit croisé associée à une action d’un groupe fini qui possède la propriété de Rokhlin traciale.
AMS Subject Classification: General theory of $C^*$-algebras, Classifications of $C^*$-algebras; factors, K-theory and operator algebras -including cyclic theory 46L05, 46L35, 46L80
[This journal is open access except for the current year and the preceding 5 years]