C. R. Math. Rep. Acad. Sci. Canada Vol. 30 (2) 2008, pp. 40–47
June 30, 2008
Marina Chugunova, Department of Mathematics. University of Toronto, Toronto, Ontario M5S 2E4 Canada; email: chugunom@math.toronto.edu
Vladimir Strauss, Department of Mathematics, Universidad Simon Bolıvar, Caracas 1080, Venezuela; email: str@usb.ve
Abstract/Résumé:
We prove that a certain non-self-adjoint differential operator admits factorization, and we apply this new representation of the operator to explicitly construct its domain. We also show that the operator is J-self-adjoint in a Krein space.
On montre qu’un certain opérateur non autoadjoint admet une factorisation et, on utilise cette représentation pour construire explicitement son domaine. On montre aussi que cet opérateur est J-autoadjoint dans un espace de Krein.
AMS Subject Classification: Operators belonging to operator ideals (nuclear; $p$-summing; in the Schatten-von Neumann classes; etc.) 47B10
[This journal is open access except for the current year and the preceding 5 years]