Mathematical Reports - Comptes rendus mathématiques

of the Academy of Science | de l'Académie des sciences

  • Home
  • Articles
  • News
  • Editorial Board
  • General Information
    • Preparation of Manuscripts
    • Subscription Information
    • FAQ
    • Help

December 10, 2017 By

Grauert and Ramspott Type Theorems on the Maximal Ideal Space of ${\mathbf H^\infty}$

C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (4) 2017, pp. 116-132

December 30, 2017

Alexander Brudnyi,Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4;
e-mail: abrudnyi@ucalgary.ca

Abstract/Résumé:

The classical Grauert and Ramspott theorems constitute the foundation of the Oka principle on Stein spaces. In this paper we establish analogous results on the maximal ideal space \(M(H^\infty)\) of the Banach algebra \(H^\infty\) of bounded holomorphic functions on the open unit disk \({\mathbb D}\subset{\mathbb C}\). We illustrate our results by some examples and applications to the theory of operator-valued \(H^\infty\) functions.

Les théorèmes classiques de Grauert et Ramspott constituent la base du principe d’Oka par rapport aux espaces Stein. Dans cet article, nous démontrons des résultats analogues sur l’espace idéal maximal \(M(H^\infty)\) de l’algèbre de Banach \(H^\infty\) des fonctions holomorphes bornées sur une disque d’unité ouverte \({\mathbb D} \subset{\mathbb C}\). Nous présentons nos résultats avec des exemples et des applications à la théorie des fonctions \(H^\infty\) évaluées par l’opérateur.

Keywords: Grauert theorem, Oka principle, Ramspott theorem, maximal ideal space of $H^\infty$
AMS Subject Classification: Spaces and algebras of analytic functions, Holomorphic bundles and generalizations 30H05, 32L05

[This journal is open access except for the current year and the preceding 5 years]

PDF(click to download): Grauert and Ramspott Type Theorems on the Maximal Ideal Space of ${mathbf H^infty}$

Filed Under: Uncategorized

 Volume / Issue

Most used Keywords

algebraic number theory approximation property automorphisms Bessel functions Boson-fermion correspondence C*-algebra Carmichael number center problem Chebyshev transform Classification of simple C*-algebras composition operators continued fractions Cuntz Semigroup cycles of ideals elliptic curves fixed point Fourier transform function fields. general relativity generic property ideals indefinite inner product inductive limits of sub-homogeneous C*- algebras Irrational rotation algebra J-Hermitian matrix K-theory Kahler manifolds L-functions maximal ideal space nonexpansive mapping noninterlacing numerical range orthogonal polynomials Predual space prime number property SP quadratic forms Renormalization rotation algebras Salem number semi-reciprocal polynomials tracially approximate splitting interval algebras unbounded traces Weak Markov set Whitney problems

Most used AMS

05C05 11A07 11A55 11B37 11B68 11D09 11D25 11D41 11E04 11F67 11G05 11R09 11R11 13B25 14J26 14M25 14P10 17B37 17B67 19K56 26A51 30C15 30H05 35B 37E10 37E20 37F20 37F25 39B72 42C05 43A07 43A62 46B20 46L05 46L35 46L40 46L55 46L80 47H10 53B25 53C55 54C60 60F10 60J75 83C05

Be notified of new issues

Copyright © 2021 · The Royal Society of Canada | La Société royale du Canada · Log in