C. R. Math. Rep. Acad. Sci. Canada Vol. 38 (4) 2016, pp. 113-155
December 31, 2016
Genrich Belitskii<\b>,Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Be'er Sheva 84105, Israel; e-mail: genrich@math.bgu.ac.il<\em>
Dmitry Kerner<\b>,Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Be'er Sheva 84105, Israel; e-mail dmitry.kerner@gmail.com<\em>
Abstract/Résumé:
Let \(M\) be a module over a local ring \(R\) and a group action \(G\circlearrowright M\), not necessarily \(R\)-linear. To understand how large is the \(G\)-orbit of an element \(z\in M\) one looks for the large submodules of \(M\) lying in \(Gz\). We provide the corresponding (necessary/sufficient) conditions in terms of the tangent space to the orbit, \(T_{(Gz,z)}\).
This question originates from the classical finite determinacy problem of Singularity Theory. Our treatment is rather general, in particular we extend the classical criteria of Mather (and many others) to a broad class of rings, modules and group actions.
When a particular ‘deformation space’ is prescribed, \(\Sigma\subseteq M\), the determinacy question is translated into the properties of the tangent spaces, \(T_{(Gz,z)}\), \(T_{(\Sigma,z)}\), and in particular to the annihilator of their quotient, \(ann\,{T_{(\Sigma,z)}}/{T_{(Gz,z)}}\).
Etant donné une action d’un groupe sur un module, \(G\circlearrowright M\), et un élément \(z\in M\), on étudie le plus grand sous-module de \(M\) contenu dans l’orbite \(Gz\). On donne des conditions nécessaires et suffisantes décrivant ce module en termes de l’espace tangent a l’orbite, \(T_{(Gz,z)}\). Cela prolonge les critères classiques de la théorie des singularités à une large classe d’anneaux, modules, et actions de groupes.
AMS Subject Classification: Deformations of singularities, Canonical forms; reductions; classification, Normal families of functions; mappings, Classification; finite determinacy of map germs, Normal forms 14B07, 15A21, 32A19, 58K40, 58K50
[This journal is open access except for the current year and the preceding 5 years]