C. R. Math. Rep. Acad. Sci. Canada Vol. 44 (2) 2022, pp. 33-49
April 28, 2022
Askold Khovanskii, University of Toronto, Toronto, Canada; e-mail: askold@math.toronto.edu
Sushi Singla, Department of Mathematics, Shiv Nadar University, Greater Noida, India 201314; e-mail: ss774@snu.edu.in
Aaron Tronscard, University of Toronto, Toronto, Canada; e-mail: tronsgar@math.utoronto.ca
Abstract/Résumé:
We reconsider the theory of Lagrange interpolation polynomials with multiple interpolation points and apply it to linear algebra. In particular, we show that one can evaluate a meromorphic function at a matrix, using only an interpolation polynomial.
On reconsidère la thèorie des polynômes d’interpolation de Lagrange et l’applique à l’algèbre linéaire. En particulier, on peut évaluer une fonction méromorphe à une matrice seulement avec un polynôme d’interpolation.
AMS Subject Classification: Instructional exposition (textbooks; tutorial papers; etc.), , Canonical forms; reductions; classification, Interpolation 15-01, 15A16, 15A21, 41A05
[This journal is open access except for the current year and the preceding 5 years]