C. R. Math. Rep. Acad. Sci. Canada Vol. 33 (4) 2011, pp. 107–115
December 30, 2011
H.D. Fegan, Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA; e-mail: hdf3@lehigh.edu
B. Steer, Mathematical Institute, 24–29 St Giles, Oxford OX1 3LB, England; e-mail: Brian.Steer@maths.ox.ac.uk
Abstract/Résumé:
For an operator \(D\) a potential \(Q\) is null isospectral if \(\operatorname{Spec}(D+Q) = \operatorname{Spec}(D)\). In this paper we study bundle maps \(Q\) on a homogeneous vector bundle over a homogeneous space that are null isospectral potentials for a large class of invariant operators \(D\), including elliptic self-adjoint differential operators. This result includes and generalizes previous results where \(D\) is the Laplace operator and \(Q\) is a complex valued function rather than a bundle map. To illustrate these results we give the examples of the Laplace and Dirac operators on \(S^1\).
Soit \(\Delta\) l’opérateur de Laplace sur une variété différentiable homogène compacte. On sait qu’il existe des fonctions \(Q\) non-nulles à valeurs complexes telles que \(\Delta\) et \(\Delta+Q\) ont le même spectre. Nous montrons ici que ce résultat s’étend largement. Si \(D\) désigne un opérateur elliptique invariant et auto-adjoint opérant sur les fonctions à valeurs dans un fibré vectoriel complexe homogène \(\mathbf{E}\) il exist des fonctions \(Q\) non-nulles à valeurs dans le fibré \(\operatorname{End}(\mathbf{E})\) telles que \(D\) et \(D+Q\) ont le même spectre. Les fonctions \(Q\) possibles se laissent calculer facilement dans le cas de \(S^1\) et l’opérateur de Dirac.
AMS Subject Classification: 58G25
[This journal is open access except for the current year and the preceding 5 years]