C. R. Math. Rep. Acad. Sci. Canada Vol. 28, (1), 2006 pp. 1–5
March 30, 2006
Karol Baron, Instytut Matematyki, Uniwersytet Slaski, ul. Bankowa 14, PL–40–007 Katowice, Poland
Witold Jarczyk, Instytut Matematyki, Uniwersytet Slaski ul. Bankowa 14, PL–40–007 Katowice, Poland and Wydzia l Matematyki, Informatyki i Ekonometrii, Uniwersytet Zielonogorski, ul. Szafrana 4a, PL–65–516 Zielona Gora, Poland
Abstract/Résumé:
We show that any Lebesgue measurable function \(f \colon \mathbb{R} \to [0,\infty)\) satisfying \( f(x) = \int_0^{\infty} f(x+y) f(y) \,dy \) has the form \( f(x) = 2 \lambda e^{-\lambda x} \) with a \(\lambda \in [0,\infty)\).
Nous démontrons que toute fonction mesurable au sens de Lebesgue \(f \colon \mathbb{R} \to [0,\infty)\) satisfaisant à \( f(x) = \int_0^{\infty} f(x+y) f(y) \,dy \) est de la forme \( f(x) = 2 \lambda e^{-\lambda x} \) avec un \(\lambda \in [0,\infty)\).
AMS Subject Classification: Other nonlinear integral equations 45G10
[This journal is open access except for the current year and the preceding 5 years]