On $\mathbb{Z}_{p}$-embeddability of cyclic ${p}$-class fields
C. R. Math. Rep. Acad. Sci. Canada Vol. 27, (2), 2005 pp. 48–53
June 30, 2005
David Brink, Department of Mathematics, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark; email: brink@math.ku.dk
Abstract/Résumé:
It is investigated when a cyclic \(p\)-class field of an imaginary quadratic number field can be embedded in an infinite pro-cyclic \(p\)-extension.
On donne des conditions pour qu’un \(p\)-corps de classes cyclique d’un corps de nombres quadratique imaginaire soit plongeable dans une \(p\)-extension pro-cyclique infinie.
Keywords:
AMS Subject Classification: Galois theory 11R32
PDF(click to download):
On $mathbb{Z}_{p}$-embeddability of cyclic ${p}$-class fields
AMS Subject Classification: Galois theory 11R32
[This journal is open access except for the current year and the preceding 5 years]