Mathematical Reports - Comptes rendus mathématiques

of the Academy of Science | de l'Académie des sciences

  • Home
  • Articles
  • News
  • Editorial Board
  • General Information
    • General Information
    • Preparation of Manuscripts
    • Subscription Information
    • FAQ
    • Help

March 25, 2015 By

On the Korselt Set of a Squarefree Composite Number

C. R. Math. Rep. Acad. Sci. Canada Vol. 35 (1) 2013, pp. 1–15

March 31, 2013

Ibrahim Al-Rasasi, King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics PO Box 5046, Dhahran 31261, Saudi Arabia e-mail: irasasi@kfupm.edu.sa

Othman Echi, King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics PO Box 5046, Dhahran 31261, Saudi Arabia e-mail: echi@kfupm.edu.sa; othechi@yahoo.com

Nejib Ghanmi, Umm Al-Qura University, University College in Makkah, Department of Mathematics, Azizia PO.Box 2064, Makkah, Kingdom of Saudi Arabia e-mail: naghanmi@uqu.edu.sa; neghanmi@yahoo.fr

Abstract/Résumé:

Let \(\alpha\in \mathbb{Z}\setminus \{0\}\). A positive composite squarefree integer \(N\) is said to be an \(\alpha\)-Korselt number (\(K_{\alpha}\)-number, for short) if \(N\neq \alpha\) and \(p-\alpha\) divides \(N-\alpha\) for each prime divisor \(p\) of \(N\). By the Korselt set of \(N\), we mean the set of all \(\alpha\in \mathbb{Z}\setminus \{0\}\) such that \(N\) is a \(K_{\alpha}\)-number. This set will be denoted by \(\mathcal{KS}(N)\).

In a recent paper , Bouallegue–Echi–Pinch have asked whether there are infinitely many squarefree composite numbers with empty Korselt set. This paper aims to solve this question by showing that for each prime number \(q\geq 19\), \(6q\) has an empty Korselt set.

We also show that for each integer \(l\geq 3\), there are infinitely many squarefree composite numbers with \(l\) prime divisors whose Korselt sets are empty.

Soit \(N\) un nombre composé sans facteur carré et \(\alpha\in \mathbb{Z} \setminus \{0\}\). On dit que \(N\) est \(\alpha\)-Korselt si \(N\neq \alpha\) et \(p-\alpha\) divise \(N-\alpha\) pour tout facteur premier \(p\) de \(N\).

L’ensemble constitué de tous les \(\alpha\) tels que \(N\) est \(\alpha\)-Korselt, noté \(\mathcal{KS}(N)\), est appelé l’ensemble de Korselt de \(N\).

Bouallegue–Echi–Pinch se sont posés la question d’existence d’une infinité de nombres composés sans facteur carré possédant des ensembles de Korselt vides.

Dans ce papier on donne une réponse positive à cette question en démontrant que pour tout premier \(q\geq 19\), \(6q\) a un ensemble de Korselt vide.

On prouve aussi que pour tout entier \(l\geq 3\), il existe une infinité de nombres composés sans facteur carré ayant \(l\) facteurs premiers et d’ensembles de Korselt vides.

Keywords: Carmichael number, Korselt number, Korselt set, prime number, squarefree composite number
AMS Subject Classification: Algorithms; complexity 11Y16

[This journal is open access except for the current year and the preceding 5 years]

PDF(click to download): On the Korselt Set of a Squarefree Composite Number

Filed Under: Uncategorized

 Volume / Issue

Most used Keywords

algebraic number theory approximation property automorphisms Bessel functions Boson-fermion correspondence C*-algebra Carmichael number center problem Chebyshev transform Classification of simple C*-algebras composition operators continued fractions Cuntz Semigroup cycles of ideals elliptic curves fixed point Fourier transform function fields. general relativity generic property ideals indefinite inner product inductive limits of sub-homogeneous C*- algebras Irrational rotation algebra J-Hermitian matrix K-theory Kahler manifolds L-functions maximal ideal space nonexpansive mapping noninterlacing numerical range orthogonal polynomials Predual space prime number property SP quadratic forms Renormalization rotation algebras Salem number semi-reciprocal polynomials tracially approximate splitting interval algebras unbounded traces Weak Markov set Whitney problems

Most used AMS

05C05 11A07 11A55 11B37 11B68 11D09 11D25 11D41 11E04 11F67 11G05 11R09 11R11 13B25 14J26 14M25 14P10 17B37 17B67 19K56 26A51 30C15 30H05 35B 37E10 37E20 37F20 37F25 39B72 42C05 43A07 43A62 46B20 46L05 46L35 46L40 46L55 46L80 47H10 53B25 53C55 54C60 60F10 60J75 83C05

Be notified of new issues

Copyright © 2021 · The Royal Society of Canada | La Société royale du Canada · Log in