Mathematical Reports - Comptes rendus mathématiques

of the Academy of Science | de l'Académie des sciences

  • Home
  • Articles
  • News
  • Editorial Board
  • General Information
    • General Information
    • Preparation of Manuscripts
    • Subscription Information
    • FAQ
    • Help

April 10, 2015 By

Radial Distribution of Zeros of Entire Functions and Sections of their Power Series

C. R. Math. Rep. Acad. Sci. Canada Vol. 27, (1), 2005 pp. 8–13

March 30, 2005

Faruk F. Abi-Khuzam, Department of Mathematics, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon; email: farukakh@aub.edu.lb

May F. Hamdan, Division of Computer Science and Mathematics, Lebanese American University, P.O. Box 135053 F 64, Beirut, Lebanon; email: mhamdan@lau.edu.lb

Abstract/Résumé:

For an entire function \(f\) with non-negative Maclaurin coefficients, a region is obtained which is defined in terms of Hayman’s function \(b(r) = r (rf^{\prime} (r)/f(r))^{\prime}\), and which is free of all zeros of \(f\) and those of all its sections. The new region defined improves on previous results. In particular, it is shown that when \(\underset{n\rightarrow \infty}{\limsup}\, b(r) = A^2/4\), \(A>0\), then the zeros \(r_n \exp (i\theta_n)\) of \(f\) satisfy the inequality, \(\underset{n\rightarrow \infty}{\liminf}\, |\theta_n| \geq 4\sin^{-1} (1/A\sqrt{2})\), which is very close to being optimal.

Etant donnée une function entière \(f\) avec des coéfficients positifs, on trouve une région définie en termes de la fonction \(b(r) = r (rf^{\prime}(r)/f(r))^{\prime}\) de Hayman, dépourvue des zéros de \(f\) et de ceux de toutes ses sections. Particulièrement, on démontre qu’au cas où \(\underset{n\rightarrow \infty}{\limsup}\, b(r) = A^2/4\), \(A>0\), les zéros \(r_n \exp (i\theta_n)\) de \(f\) satisfont l’inégalité \(\underset{n\rightarrow\infty}{\liminf} \, |\theta_n| \geq 4\sin^{-1} (1/A\sqrt{2})\), qui est presque optimale.

[
Keywords:
AMS Subject Classification: Zeros of polynomials; rational functions; and other analytic functions (e.g. zeros of functions with bounded Dirichlet integral) 30C15

[This journal is open access except for the current year and the preceding 5 years]

PDF(click to download): Radial Distribution of Zeros of Entire Functions and Sections of their Power Series

Filed Under: Uncategorized

 Volume / Issue

Most used Keywords

algebraic number theory approximation property automorphisms Bessel functions Boson-fermion correspondence C*-algebra Carmichael number center problem Chebyshev transform classification Classification of simple C*-algebras composition operators continued fractions Cuntz Semigroup elliptic curves fixed point Fourier transform function fields. functoriality general relativity generic property ideals indefinite inner product inductive limits of sub-homogeneous C*- algebras Irrational rotation algebra J-Hermitian matrix K-theory Kahler manifolds L-functions maximal ideal space nonexpansive mapping numerical range orthogonal polynomials Predual space prime number property SP Renormalization rotation algebras Salem number semi-reciprocal polynomials tracially approximate splitting interval algebras unbounded traces uniqueness Weak Markov set Whitney problems

Most used AMS

05C05 11A07 11A55 11B37 11B68 11D09 11D25 11D41 11E04 11F11 11F66 11F67 11G05 11R09 11R11 13B25 14J26 14M25 14P10 17B37 17B67 19K14 19K56 26A51 30C15 30H05 35B 37E10 37E20 37F25 39B72 42C05 43A07 46B20 46L05 46L35 46L40 46L55 46L80 47H10 53B25 53C55 54C60 60F10 83C05

Be notified of new issues

Copyright © 2023 · The Royal Society of Canada | La Société royale du Canada · Log in
ISSN: 2816-5810 (Online)