Renormalization of Bi-cubic Circle Maps
C. R. Math. Rep. Acad. Sci. Canada Vol. 41 (4) 2019, pp. 57-83
December 31, 2019
Michael Yampolsky,Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4; e-mail: yampol@math.toronto.edu
Abstract/Résumé:
We develop a renormalization theory for analytic homeomorphisms of the circle with two cubic critical points. We prove a renormalization hyperbolicity theorem. As a basis for the proofs, we develop complex a priori bounds for multi-critical circle maps.
On développe une théorie de renormalisation pour les homéomorphismes analytiques du cercle à deux points critiques cubiques. On démontre un théorème d’hyperbolicité dans le cadre de renormalisation. Comme base des démonstrations, on développe des bornes complexes a priori pour les applications du cercle dans lui-même aux points critiques multiples
Keywords: Critical circle map, Renormalization, complex bounds
AMS Subject Classification: Maps of the circle, Universality; renormalization, Renormalization 37E10, 37E20, 37F25
PDF(click to download):
Renormalization of Bi-cubic Circle Maps
AMS Subject Classification: Maps of the circle, Universality; renormalization, Renormalization 37E10, 37E20, 37F25
[This journal is open access except for the current year and the preceding 5 years]