C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (3) 2017, pp. 77-89
September 30, 2017
Michael Yampolsky,Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4; e-mail: yampol@math.toronto.edu
Abstract/Résumé:
In this paper we generalize renormalization theory for analytic critical circle maps with a cubic critical point to the case of maps with an arbitrary odd critical exponent by proving a quasiconformal rigidity statement for renormalizations of such maps.
Dans cet article on généralise la théorie de la renormalisation pour les transformations criticales analytiques du circle à point critical cubique au cas de transformations à exposant critical impair arbitraire, en démontrant une affirmation de rigidité quasi-conforme.
AMS Subject Classification: Maps of the circle, Universality; renormalization, Renormalization 37E10, 37E20, 37F25
[This journal is open access except for the current year and the preceding 5 years]