Mathematical Reports - Comptes rendus mathématiques

of the Academy of Science | de l'Académie des sciences

  • Home
  • Articles
  • News
  • Editorial Board
  • General Information
    • Preparation of Manuscripts
    • Subscription Information
    • FAQ
    • Help

April 10, 2015 By

Zeros of a real linear recurrence of degree $n\geq 4$

C. R. Math. Rep. Acad. Sci. Canada Vol. 27, (2), 2005 pp. 41–47

June 30, 2005

Thomas R. Hagedorn, Department of Mathematics and Statistics, The College of New Jersey, P.O. Box 7718, Ewing, NJ 08628-0718 USA; email: hagedorn@tcnj.edu

Abstract/Résumé:

Let \(S = \{a_i\}_{i=0}^\infty\) be a real linear recurrence of degree \(n\) with companion polynomial \(f_S(x)\). Let \(N_S\) be the zero-multiplicity for \(S\). Assume that the roots of \(f_S(x)\) are simple, real, and nondegenerate. When \(n=3\), Smiley and Picon showed \(N_S\leq 3\). When \(n=4\), we establish the sharp bound \(N_S\leq 5\). In general \(n\), we prove \(N_S \leq 2n-3\).

Soit \(S = \{a_i\}_{i=0}^{\infty}\) une suite définie par une relation de récurence linéaire réels de degré \(n\) avec polynôme charactéristique \(f_S (x)\). Désignons par \(N_S\) le zéro-multiplicité de \(S\). Supposons que les racines de \(f_S(x)\) soient simples, réelles, et non-dégénérées. Dans le cas \(n=3\), Smiley et Picon ont obtenu le resultat \(N_S \leq 3\). Dans le cas \(n=4\), nous démontrons la borne optimale \(N_S \leq 5\). Enfin nous démontrons que, étant donné un entier \(n\) quelconque, \(N_S \leq 2n-3\).

Keywords:
AMS Subject Classification: Recurrences 11B37

[This journal is open access except for the current year and the preceding 5 years]

PDF(click to download): Zeros of a real linear recurrence of degree $ngeq 4$

Filed Under: Uncategorized

 Volume / Issue

Most used Keywords

algebraic number theory approximation property automorphisms Bessel functions Boson-fermion correspondence C*-algebra Carmichael number center problem Chebyshev transform Classification of simple C*-algebras composition operators continued fractions Cuntz Semigroup cycles of ideals elliptic curves fixed point Fourier transform function fields. general relativity generic property ideals indefinite inner product inductive limits of sub-homogeneous C*- algebras Irrational rotation algebra J-Hermitian matrix K-theory Kahler manifolds L-functions maximal ideal space nonexpansive mapping noninterlacing numerical range orthogonal polynomials Predual space prime number property SP quadratic forms Renormalization rotation algebras Salem number semi-reciprocal polynomials tracially approximate splitting interval algebras unbounded traces Weak Markov set Whitney problems

Most used AMS

05C05 11A07 11A55 11B37 11B68 11D09 11D25 11D41 11E04 11F67 11G05 11R09 11R11 13B25 14J26 14M25 14P10 17B37 17B67 19K56 26A51 30C15 30H05 35B 37E10 37E20 37F20 37F25 39B72 42C05 43A07 43A62 46B20 46L05 46L35 46L40 46L55 46L80 47H10 53B25 53C55 54C60 60F10 60J75 83C05

Be notified of new issues

Copyright © 2021 · The Royal Society of Canada | La Société royale du Canada · Log in