<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H.S.M. Coxeter, 1907-, Dedication</td>
<td>1</td>
</tr>
<tr>
<td>T.-Y. LEE and B. REMILLARD</td>
<td>2</td>
</tr>
<tr>
<td>Occupation times in systems of null recurrent Markov processes</td>
<td></td>
</tr>
<tr>
<td>K.-Q. LIU</td>
<td>7</td>
</tr>
<tr>
<td>The quantum Witt algebra and quantizations of some Witt-modules</td>
<td></td>
</tr>
<tr>
<td>S.D. MORGERA</td>
<td>13</td>
</tr>
<tr>
<td>On noisy pattern matching under geometrical constraints</td>
<td></td>
</tr>
<tr>
<td>V. DRENSKY</td>
<td>19</td>
</tr>
<tr>
<td>Tame primitivity for free nilpotent algebras</td>
<td></td>
</tr>
<tr>
<td>P.R. HEATH</td>
<td>25</td>
</tr>
<tr>
<td>Nielsen type numbers for fibre preserving maps, coincidences and periodic points</td>
<td></td>
</tr>
<tr>
<td>B. SZYSZKOWICZ</td>
<td>31</td>
</tr>
<tr>
<td>L_p-functionals of weighted partial sum processes</td>
<td></td>
</tr>
<tr>
<td>S. FENG</td>
<td>37</td>
</tr>
<tr>
<td>Large deviations for Markov processes with mean field interaction and unbounded jumps</td>
<td></td>
</tr>
<tr>
<td>Y. WU</td>
<td>43</td>
</tr>
<tr>
<td>Extinction of the multilevel $M(M(R^d))$-valued branching diffusion process</td>
<td></td>
</tr>
<tr>
<td>S.A. HASSANI</td>
<td>49</td>
</tr>
<tr>
<td>Construction d'un example d'anneau de Jaffard local factoriel non noetherienne de dimension 2 et de caracteristique 0</td>
<td></td>
</tr>
<tr>
<td>N. TERAI and H. OSADA</td>
<td>55</td>
</tr>
<tr>
<td>The Diophantine equation $x^4 - dy^4 = zp$</td>
<td></td>
</tr>
<tr>
<td>Mailing Addresses</td>
<td>59</td>
</tr>
</tbody>
</table>
This issue

COMPTES RENDUS MATHEMATIQUES
MATHEMATICAL REPORTS

Vol. XIV, No. 1, February 1992

is dedicated by his admirers, colleagues, disciples, friends, readers, students and well-wishers to

Professor Harold Scott Macdonald Coxeter
1907–
Emeritus Professor of Mathematics, University of Toronto

Academician, artist, bestselling writer, dean of geometers, first editor of the Canadian Journal of Mathematics 1948–57, friend to all, geometer of purest ray serene, lecturer of spellbinding magnetism, mathematician of n-dimensional insight, power, range and strength, musician, President of the Canadian Mathematical Society 1965–67, President of the International Mathematical Congress, 1974, teacher of worldwide fame and many-sided scholar,

On the occasion of his retirement from the editorial board, and with grateful thanks for his valuable contributions as author, editor, and inspiration during its formative period 1979–1991.
OCCUPATION TIMES IN SYSTEMS OF NULL RECURRENT MARKOV PROCESSES

Tzong-Yow Lee\(^1\) and Bruno Remillard\(^2\)
University of Maryland, College Park
and Université du Québec, Trois-Rivières

Presented by Donald A. Dawson, F.R.S.C.

Abstract

We study asymptotic properties of differences of occupation times for infinite systems of noninteracting Markovian particles. Under a suitable normalisation we prove convergence in law to a nondegenerate Gaussian field. We also obtain large deviations properties.

1 Introduction

In this article we will consider infinite particle systems of noninteracting Markov chains i.e. each particle executes a Markov chain independently of all other particles. We restrict our study to Markov chains on a countable state space \(X\) satisfying the following assumptions:

\((A1)\) The Markov chain is irreducible and null recurrent.

Denote by \(\{\pi_{xy}, x, y \in X\}\) the transition probability matrix. Assumption \((A1)\) ensures existence and uniqueness of a positive function \(\alpha(\cdot)\) on \(X\) such that

\[\sum_{x \in X} \alpha(x)\pi_{xy} = \alpha(y) \text{ and } \alpha(0) = 1\]

where \(0 \in X\) is fixed throughout this article.

\(^1\)Supported in part by the Office of Graduate Studies and Research (1990), University of Maryland and by NSF Grant No. DMS 9106582.

\(^2\)Supported in part by the Fonds Institutionnel de Recherche, Université du Québec à Trois-Rivières and by the Natural Sciences and Engineering Research Council of Canada, Grant No. OGP0042137.

Key words and phrases: Large deviations, Occupation times, Infinite particle systems, Markov chains.

AMS 1980 subject classifications: Primary 60F10; secondary 60J05.
(A2) The resolvent \(G_s(x, y) \) defined as
\[
G_s(x, y) = \sum_{n=0}^{\infty} e^{-sn} x_n^{(y)}/\alpha(y), \ s > 0
\]
satisfies for each \(y \in X \)
\[
\sup_{x \in X} |G_s(x, y) - G_s(x, 0)| < \infty \text{ uniformly as } s \to 0
\]

(A3) The resolvent admits the representation
\[
G_s(x, y) = \Gamma(1 + \beta)s^{-\beta}I(s^{-1}) + U(x, y) + \epsilon(x, y, s)
\]
where \(I : (0, \infty) \mapsto (0, \infty) \) is slowly varying at infinity, \(0 \leq \beta < 1 \), and (i), (ii) hold, where

(i) \[
\|V\|^2 = 2 \sum_{y \in X} \alpha(x)\alpha(y)V(x)V(y)U(x, y) - \sum_{x \in X} \alpha(x)V(x)^2 > 0
\]
for all \(V \neq 0, V \in \mathcal{V}_0 = \{W : X \mapsto R, W \text{ has finite support and } \sum_x \alpha(x)W(x) = 0\} \)

(ii) There exists a function \(\rho : X \mapsto [1, \infty) \) such that for every \(y \in X \),
\[
\sup_x U(x, y)/\rho(x) < \infty \text{ and } \lim_{s \to 0} \sup_x \epsilon(x, y, s)/\rho(x) = 0
\]

(A4) There exists a constant \(\eta \) such that
\[
\sup_{x \in X} G_s(x, x) \leq \eta s^{-\beta}I(s^{-1}), \ \forall s \in (0, 1]
\]

Remark 1: Assumptions (A2) and (A3) are discrete time analogues of Kasahara's assumptions (see Kasahara (1977) for more details). By adding (A4) we are able to strengthen his convergence in distribution result to convergence of the moment generating function in a neighborhood of 0. The later is essential to prove our large deviations principles for particle systems. It is easy to prove that (A1) to (A4) are satisfied by random walks in the domain of attraction of a stable law of index \(\alpha \) (\(\alpha \in [1, 2] \) in dimension 1 and \(\alpha = 2 \) in dimension 2).

Let us now go back to our infinite particle system. We suppose that the number of particles at time zero at site \(x \) is a Poisson random variable with mean \(\alpha(x) \) and is independent of all other sites. It can be checked that the process thus constructed is an ergodic, stationary Markov process. Let \(P \) denote this process, \(E \) denote the corresponding expectation and \((\omega_j(n), j = 1, 2, \ldots, n = 0, 1, \ldots)\) denote a labeling of the sample trajectories. Let \(1_x \) denote the index function of the site \(x \in X \). Further let
Theorem

$$\xi_N(x) = \sum_{j=1}^{\infty} \sum_{n=0}^{N-1} l(x) \omega_j(n) \mid x \in X$$

and define $\delta_N(x) = (\xi_N(x) - \alpha(x)\xi_N(0)) / N$. We expect that the normalized differences of occupation times \{\delta_N(x), x \in X \setminus \{0\}\} converge in distribution to a Gaussian field of mean zero and nondegenerate covariance. This implies that $\log P \{\delta_N(x) > a\}$ tends to a negative number depending on a, as $N \to \infty$. On the other hand, Lee (1989) proved a large deviation property for $\{\xi_N(x)/N, x \in X\}$. Using his results we can prove that

$$\lim_{N \to \infty} \left(N^{1-\beta}/l(N) \right)^{-1} \log P \{\delta_N(x) > aN^{1/2}\} = -\infty$$

for $a > 0$.

Our objective is to calculate the leading term of the asymptotic probabilities

$$\log P \{\delta_N(x) > a\lambda(N)\}, a > 0,$$

for $\lambda(N) \equiv 1$ and for $\lambda(N) \to \infty$. In this paper we present the case when $\lambda(N)$ grows no faster than $\left(N^{1-\beta}/l(N) \right)^{1/2}$. More precisely we are interested in the following cases:

\[
\begin{cases}
\lambda(N) \equiv 1, \\
\lambda(N) / \left(N^{1-\beta}/l(N) \right)^{1/2} \to 0 \text{ as } N \to \infty, \\
\lambda(N) = \left(N^{1-\beta}/l(N) \right)^{1/2}
\end{cases}
\]

For a simple random walk on \mathbb{Z}, Cox and Durrett (1990) calculated the leading term in the third case, i.e. $\lambda(N) = N^{1/4}$ and Remillard (1990) extended their results to its function space generality as Lee (1989) did.

For $\gamma : X \setminus \{0\} \to \mathbb{R}$, i.e. $\gamma \in \mathbb{R}^X \setminus \{0\}$, let

$$\|\gamma\|_* = \sup_{\|V\|=1, V \in \mathcal{V}_0} \sum_{x \in X} \gamma(x)V(x) \in [0, \infty]$$

It is easy to see that if γ has finite support, then $\|\gamma\|_* < \infty$.

2. Asymptotic properties of occupation times

We are now in a position to state our main results, all of which assume (A1) to (A4).

Theorem 1 If $\beta > 0$ and $V \in \mathcal{V}_0$, then

$$\lim_{N \to \infty} E \left\{ \exp \sum_{x \in X} V(x)\delta_N(x) \right\} = \exp \left(\|V\|^2/2 \right)$$

This implies that $\delta_N := \{\delta_N(x), x \in X \setminus \{0\}\}$ converges in distribution to a nondegenerate Gaussian field $\delta := \{\delta(x), x \in X \setminus \{0\}\}$ with mean zero and covariance

$$\text{Cov}(\delta(x), \delta(y)) = <1_x - \alpha(x)l_0, 1_y - \alpha(y)l_0>$$
where \(<, \cdot, >\) denotes the scalar product over \(V_0\) defined by
\[
< V_1, V_2 > = \left(\| V_1 + V_2 \|^2 - \| V_1 - V_2 \|^2 \right)/4, \ V_1, V_2 \in V_0
\]

Theorem 2 Suppose that \(\beta > 0\) and \(\lambda(N)\) tends to infinity in such a way that
\[
\lim_{N \to \infty} \frac{\lambda(N)}{[N^1-\beta/l(N)]^{1/2}} = 0
\]

Let \(C\) be a closed subset and let \(G\) be an open subset of the function space \(R^{X\setminus\{0\}}\) equipped with the product topology. Then
\[
\limsup_{N \to \infty} \lambda(N)^{-2} \log P \{ \delta_N \in \lambda(N)C \} \leq - \inf_{\gamma \in G} \|\gamma\|_s^2/2
\]
\[
\liminf_{N \to \infty} \lambda(N)^{-2} \log P \{ \delta_N \in \lambda(N)G \} \geq - \inf_{\gamma \in G} \|\gamma\|_s^2/2
\]

where \(\lambda(N)A = \{ \sigma \lambda(N); \sigma \in A \}, A \subset \mathbb{R}^{X\setminus\{0\}}\).

Remark 2 It follows easily from the definition of \(\| \cdot \|_s\) that the mapping \(\gamma \mapsto \|\gamma\|_s\) is lower semicontinuous under the product topology of \(R^{X\setminus\{0\}}\).

Denote by \(f_\beta\) the moment generating function of the Mittag-Leffler distribution of index \(\beta \in (0, 1)\)
\[
f_\beta(a) = \begin{cases} \sum_{k=0}^{\infty} \frac{a^k}{\Gamma(1 + k\beta)} & \text{for } a \in \mathbb{R} \text{ when } \beta \in (0, 1) \\ 1/(1 - a) & \text{for } a < 1 \text{ when } \beta = 0 \\ +\infty & \text{for } a \geq 1 \text{ when } \beta = 0 \end{cases}
\]
and let
\[
A_\beta(a) = \frac{\sin(\beta \pi)}{\beta \pi} \int_0^1 b^{-\beta} \left(-1 + f_\beta(\Gamma(1 + \beta)(1 - b)\beta a^2/2) \right) db
\]
a \in \mathbb{R}, \text{ when } \beta \in (0, 1), \text{ and}
\[
A_0(a) = \begin{cases} -1 + 1/(1 - a^2/2) & \text{if } |a| < \sqrt{2} \\ +\infty & \text{if } |a| \geq \sqrt{2} \end{cases}
\]

Further let
\[
B_\beta(b) = \sup_{a \in \mathbb{R}} (ba - A_\beta(a))
\]
It is readily checked that both functions \(A_\beta\) and \(B_\beta\) are even, strictly convex, differentiable (when finite), and are equal to zero when the argument is equal to zero.

Theorem 3 Suppose that \(\beta > 0\). If \(C\) is a closed subset and \(G\) is an open subset of \(R^{X\setminus\{0\}}\) under product topology, then
\[
\limsup_{N \to \infty} (N^{1-\beta}/l(N))^{-1} \log P \left\{ \delta_N \in (N^{1-\beta}/l(N))^{1/2} C \right\} \leq - \inf_{\gamma \in G} B_\beta(\|\gamma\|_s)
\]
\[
\liminf_{N \to \infty} (N^{1-\beta}/l(N))^{-1} \log P \left\{ \delta_N \in (N^{1-\beta}/l(N))^{1/2} G \right\} \geq - \inf_{\gamma \in G} B_\beta(\|\gamma\|_s)
\]

In case \(\beta = 0\) (see assumption (A3)), we need to add one more assumption. For \(f : X \mapsto R\) satisfying \(\sum_{y \in X} \pi_y |f(y)| < \infty\) for all \(z \in X\), we define
\[
(\pi f)(z) = \sum_{y \in X} \pi_{yx} f(y)
\]
(A5) The number c_ν defined by

$$c_\nu := \sup_{v \in V_0} \sup_{x \in X} \frac{\log(\pi \{ \exp f_v \})(x)}{(\pi f_v^2)(x)}$$

is finite, where $f_v(\cdot) = GV(\cdot) - (\pi GV)(\cdot)$ and $GV(x) = \sum_y U(x, y)V(y)\alpha(y)$.

Theorem 4 Suppose that $\beta = 0$. If in addition (A5) is fulfilled, then Theorem 1 and Theorem 2 hold. Moreover there exists a number $\tilde{\gamma}$ such that Theorem 3 holds if the function space $R^X \setminus \{0\}$ is replaced by the subspace $\{\gamma; \|\gamma\|_\infty < \tilde{\gamma}\}$; we can choose $\tilde{\gamma} = 2^{\nu(1/2)}(c_\nu)^{1/2}$.

Remark 3 It is readily checked that (A5) holds when $\inf \{\pi_{xy}; \pi_{xy} > 0\} > 0$. It is easy to see that Theorem 4 applies (with $c_\nu = 1/2$) to the simple random walk in two dimensions.

Conjecture 1 Theorem 4 holds with $\tilde{\gamma} = +\infty$.

These theorems are proved by estimating the cumulant generating function of $\{\delta_N(x), x \in X \setminus \{0\}\}$ as $N \to \infty$.

References

Tzong-Yow Lee
Department of Mathematics
University of Maryland
College Park MD 20742
U.S.A.
e-mail : tyl@hilda.umd.edu

Bruno Remillard
Département de mathématiques
Université du Québec à Trois-Rivières
Trois-Rivières, Qc
Canada G1K 7P4
e-mail : bruno.remillard@uqtr.uquebec.ca

Received February 27, 1992
THE QUANTUM WITT ALGEBRA
AND
QUANTIZATIONS OF SOME WITT-MODULES

KE-QIN LIU

Presented by R.V. Moody, F.R.S.C.

Abstract. The quantum universal central extension of the quantum Witt algebra at roots of unity is determined, two characterizations are given for the quantum Witt algebra, a q-analogue of the enveloping algebra of the Virasoro algebra is introduced and quantizations of the module of tensor fields over the Witt algebra are obtained.

§0. Notations and Definitions. Throughout the paper, all vector spaces are vector spaces over the complex number field \mathbb{C} and the following notations are used:

$\mathbb{C}^{*} := \{ x \in \mathbb{C} \mid x \neq 0 \}$;

q is a complex number satisfying $q^2 \neq 0, 1$;

If q is a t-th primitive root of unity, then

$$T := \begin{cases}
\sigma(q), & \text{if } \sigma(q) \text{ is odd}, \\
\frac{\sigma(q)}{2}, & \text{if } \sigma(q) \text{ is even};
\end{cases}$$

$\ln(z)$ is the principal value of the function $\ln(z)$;

$$q^{\alpha} := e^{\alpha \ln(q)}, \quad [\alpha] := \frac{q^{\alpha} - q^{-\alpha}}{q - q^{-1}}, \quad < \alpha > := \frac{q^{\alpha} + q^{-\alpha}}{2}, \quad \text{where } \alpha \in \mathbb{C};$$

For any \mathbb{Z}-graded vector space $V = \oplus_{n \in \mathbb{Z}} V_n$, $J \in Hom(V, V)$ is defined by $J(v_n) := q^n v_n$ for $n \in \mathbb{Z}$ and $v_n \in V_n$;

$\sigma \in Hom(V, V)$ is defined by $\sigma := \frac{J + J^{-1}}{2}$;

Let $A = \oplus_{n \in \mathbb{Z}} A_n$ be a \mathbb{Z}-graded algebra over \mathbb{C} with multiplication denoted by xy for $x, y \in A$. We define $(x, y, z)_q$, $J_q(x, y, z)$, the plus algebra (A^+, σ), and the minus algebra $(A^-, [,])$ by

$$(x, y, z)_q := (xy)\sigma(x) - \sigma(x)(yz),$$

$$J_q(x, y, z) := (xy)\sigma(x) + (yz)\sigma(x) + (xz)\sigma(y);$$
\[A^\pm := A \quad \text{(as Z-graded vector space)}, \]
\[x \circ y := \frac{1}{2}(xy + yx), \quad [x, y] := xy - yx, \quad \text{where } x, y, z \in \mathbb{Z}. \]

Definition 1. Let \(A \) be a \(\mathbb{Z} \)-graded algebra over \(\mathbb{C} \) with multiplication denoted by \(xy \).

1. \(A \) is called quantum flexible if \((x, y, x)_q = 0 \) for \(x, y \in A \).
2. \(A \) is called a quantum Lie algebra if \(xy = -yx \) and the following quantum Jacobi identity holds:
\[J_q(x, y, z) = 0 \quad \text{for } x, y \text{ and } z \in A. \]
3. \(A \) is called quantum associative if \((x, y, x)_q = 0 \) for \(x, y, z \in A \).
4. \(A \) is called a quantum Jordan algebra if \((x, y, x^2)_q = 0 \) for \(x, y \in A \).

The quantum Witt algebra \(W_q \), defined by
\[W_q := \bigoplus_{n \in \mathbb{Z}} \mathbb{C}d_n, \quad d_md_n := [m - n]d_{m+n} \quad \text{for } m, n \in \mathbb{Z}, \]
is a quantum Lie algebra.

If \(A \) is a quantum associative algebra, then \((A^-, [\ , \]) \) is a quantum Lie algebra. If \(A \) is a quantum associative algebra satisfying \([x^2, x] = 0 \) for \(x \in A \), then \((A^+, o) \) is a quantum Jordan algebra.

Definition 2. The \(q \)-analogue \(U(W_q) \) of the enveloping algebra of the Witt algebra is defined as the associative algebra generated by \(\{ J^{\pm 1}, d_m \mid m \in \mathbb{Z} \} \) with relations:
\[JJ^{-1} = J^{-1}J = 1, \quad Jd_mJ^{-1} = q^md_m, \]
\[q^md_md_n - q^nd_md_n = [m - n]d_{m+n} \quad \text{for } m, n \in \mathbb{Z}. \]

Definition 3. The \(q \)-analogue \(U(V_q) \) of the enveloping algebra of the Virasoro algebra is defined as the associative algebra generated by \(\{ J^{\pm 1}, c, d_m \mid m \in \mathbb{Z} \} \) with relations:
\[JJ^{-1} = J^{-1}J = 1, \quad Jd_mJ^{-1} = q^md_m, \quad cJ = Jc, \quad cd_m = q^md_mc, \]
\[q^md_md_n - q^nd_md_n = [m - n]d_{m+n} + \frac{[m - 1][m][m + 1]}{[2][3]} \delta_{m+n, 0}c, \]
where \(m, n \in \mathbb{Z} \) and \(q \) is not a root of unity.

Let \(U_q(W) \) be the associative algebra generated by \(\{ d_m \mid m \in \mathbb{Z} \} \) with the following relations:

\[
q^{m-n}d_mD_n - q^{n-m}d_Nd_m = [m - n]d_{m+n} \quad \text{for } m, n \in \mathbb{Z}.
\]

This algebra was constructed by T.L. Curtright and C.K. Zachos in [2].

Definition 4. A \(U(W_q) \)-module (or \(U_q(W) \)-module) \(V \) is called a \(\mathbb{Z} \)-graded module if \(V = \oplus_{n \in \mathbb{Z}} V_n \) and \(d_m(v_n) \in V_{m+n} \) for \(m, n \in \mathbb{Z} \).

Remark. \(V = \oplus_{n \in \mathbb{Z}} V_n \) is a \(\mathbb{Z} \)-graded \(U_q(W) \)-module if and only if \(V \) is a \(\mathbb{Z} \)-graded \(U(W_q) \)-module with \(J \mid V_n = q^n \cdot \text{id} \).

§1. The quantum universal central extension of \(W_q \) at roots of unity. In [6], we have seen that if \(q \) is not a root of unity, then the quantum universal central extension of \(W_q \) is a 1-dimensional quantum central extension of \(W_q \). The first theorem in this paper describes the quantum universal central extension of \(W_q \) at roots of unity. It turns out that if \(q \) is a root of unity, then the quantum universal central extension of \(W_q \) is an infinite-dimensional quantum central extension of \(W_q \).

Theorem 1. Let \(q \) be a \(t \)-th primitive root of unity and \(L = \oplus_{n \in \mathbb{Z}} L_n \) the quantum universal central extension of \(W_q \). We have

1. If \(T \) is odd and \(T \geq 5 \), then

\[
L_{mT+i} = \begin{cases}
C\ell_{mT+i}, & \text{if } 1 \leq i \leq T-1, \\
C\ell_{mT} \bigoplus \left(\bigoplus_{k+r=m} C_{kT+rT} \right), & \text{if } i = 0,
\end{cases}
\]

\[
c_{kT+rT}L = 0, \quad \ell_{kT+i}\ell_{rT-j} = q^{(k+r)T} \varepsilon_{i+j} \ell_{(k+r)T+(i-j)} + \delta_{ij} \frac{[i-1][i][i+1]}{[2][3]} c_{kT+rT},
\]

where \(m, k, r, i, j \in \mathbb{Z} \) and \(0 \leq i, j \leq T-1 \).
(2) If T is even and $T \geq 4$, then

$$L_{mT+i} = \begin{cases}
 C\ell_{mT+i}, & \text{if } 1 \leq i \leq T-1, \\
 C\ell_{mT} \bigoplus \left(\bigoplus_{k+r=m \atop k,r \in \mathbb{Z}} C_{kr}, T \right), & \text{if } i = 0,
\end{cases}$$

$c_{kT,rT}L = 0, \quad \ell_{kT+i} \ell_{rT-j} = q^{(k+r)T}[i + j] \ell_{(k+r)T+(i-j)} + \delta_{ij} \delta_{i+j,T} c_{kT,rT}$,

where $m, k, r, i, j \in \mathbb{Z}$, $0 \leq i, j \leq T-1$ and $c_{kT,rT} := -c_{(r-1)T,(k+1)T}$ for $k-r \leq -1$.

(3) If $T = 3$, then

$$L_{3m+i} = \begin{cases}
 C\ell_{3m+i}, & \text{if } i = 1, 2, \\
 C\ell_{3m} \bigoplus \left(\bigoplus_{k+r=m \atop k,r \in \mathbb{Z}} C_{3k,3r} \right), & \text{if } i = 0,
\end{cases}$$

$c_{3k,3r}L = 0, \quad \ell_{3k+i} \ell_{3r-j} = q^{3(k+r)[i + j]} \ell_{3(k+r)+(i-j)} + \delta_{ij} (\delta_{k0} - 1)(\delta_{r0} - 1)(3\delta_{i0} - 2)c_{3k,3r}$,

where $m, k, r \in \mathbb{Z}$, $i, j = 0, 1$ and $c_{3k,3r} := -c_{3r,3k}$ for $k \leq r$.

(4) If $T = 2$, then

$$L_n = \begin{cases}
 C\ell_n, & \text{if } n \text{ is odd}, \\
 C\ell_n \bigoplus \left(\bigoplus_{k+r=n \atop k,r \in \mathbb{Z}} C_{kr} \right), & \text{if } n \text{ is even},
\end{cases}$$

$c_{kr}L = 0, \quad \ell_m \ell_n = \begin{cases}
 [m-n] \ell_{m+n}, & \text{if } m+n \text{ is odd}, \\
 c_{mn}, & \text{if } m+n \text{ is even},
\end{cases}$

where $m, n, k, r \in \mathbb{Z}$ and $c_{mn} := -c_{nm}$ if $m \leq n$.

Remark. For a fixed positive integer n, if $q^4 = 1$, then the quantum universal central extension of $\mathbb{C}[t, t^{-1}] \otimes \mathfrak{sl}_q^n(2)$ is also a quantum central extension of $\mathbb{C}[t, t^{-1}] \otimes \mathfrak{sl}_q^n(2)$ by an infinite dimensional \mathbb{Z}-graded vector space.
§2. Characterizations of the quantum Witt algebra. From [5], [8] and [9], we know that the usual Witt algebra has two characterizations. The second theorem in this paper asserts that if \(q \) is not a root of unity, then the \(q \)-deformations of the two characterizations hold for the quantum Witt algebra \(W_q \).

Theorem 2. Let \(A = \oplus_{n \in \mathbb{Z}} A_n \) be a \(\mathbb{Z} \)-graded algebra over \(C \). If \(q \) is not a root of unity, then the following are equivalent:

1. \(A \) is the quantum Witt algebra.
2. \(A \) is a quantum flexible algebra and \((A^-, [\cdot, \cdot])\) is the quantum Witt algebra.
3. \(A \) is a quantum Lie algebra, \(\text{dim}(A_n) \leq 1 \) for all \(n \in \mathbb{Z} \) and

\[
(A_0A_1) \neq 0, \quad (A_1A_{-1}) \neq 0, \quad (A_2A_{-1}) \neq 0, \quad (A_{-2}A_1) \neq 0.
\]

§3. The \(q \)-analogue of one of Kaplansky’s theorems. For any \((\lambda, \alpha, \beta) \in C^* \times C \times C\), we have five kinds of \(\mathbb{Z} \)-graded \(U(W_q) \)-module \(A(\lambda, \alpha, \beta), B(\lambda, \alpha, \beta), C(\lambda, \alpha), D(\lambda, \alpha) \) and \(E(\lambda) \) defined by

\[
A(\lambda, \alpha, \beta) := \oplus_{k \in \mathbb{Z}} Cv_k, \quad J(v_k) := \lambda q^k v_k,
\]

\[
d_n(v_k) := -\lambda^{-1} \left((k + \alpha)q^\alpha + [1 + n][\beta]q^{n+k}\right) v_{n+k};
\]

\[
B(\lambda, \alpha, \beta) := \oplus_{k \in \mathbb{Z}} Cv_k, \quad J(v_k) := \lambda q^k v_k,
\]

\[
d_n(v_k) := -\lambda^{-1} \left([n + k + \alpha]q^{n+k} + [1 - n][\beta]q^{n+k}\right) v_{n+k};
\]

\[
C(\lambda, \alpha) := \oplus_{k \in \mathbb{Z}} Cv_k, \quad J(v_k) := \lambda q^k v_k,
\]

\[
d_n(v_k) := -\lambda^{-1} \left(q^{n+1}[\alpha + n + k] + [n]\frac{q^{-n-k-1}}{q - q^{-1}}\right) v_{n+k};
\]

\[
D(\lambda, \alpha) := \oplus_{k \in \mathbb{Z}} Cv_k, \quad J(v_k) := \lambda q^k v_k,
\]

\[
d_n(v_k) := -\lambda^{-1} q^n \left(q^\alpha[1 - n][\alpha + k] - [n]\frac{q^{-n-k-1}}{q - q^{-1}}\right) v_{n+k}
\]
and

\[E(\lambda) := \oplus_{k \in \mathbb{Z}} \mathbb{C}v_k, \quad J(v_k) := \lambda q^k v_k, \]

\[d_n(v_k) := \lambda^{-1} q^{n^2+2nk-k} \frac{q^n - q^{-1}}{q - q^{-1}} v_{n+k}, \]

where \(n, k \in \mathbb{Z} \).

Although both \(A(1, \alpha, \beta) \) and \(B(1, \alpha, \beta) \) become the module of tensor fields over the Witt algebra when \(q \to 1 \), this is not the case for other modules. The third theorem in this paper is the \(q \)-analogue of the Theorem 2 proved by I. Kaplansky in [5].

Theorem 3. Let \(q \) be not a root of unity and \(V = \oplus_{k \in \mathbb{Z}} \mathbb{C}v_k \) a \(\mathbb{Z} \)-graded \(U(W_q) \)-module with \(J(v_k) \in \mathbb{C}v_k \) for \(k \in \mathbb{Z} \). If \(d_1 \) and \(d_{-1} \) are injective operators on \(V \), then there exists some \((\lambda, \alpha, \beta) \in \mathbb{C}^* \times \mathbb{C} \times \mathbb{C} \) such that \(V \) is isomorphic to one of the following \(U(W_q) \)-modules:

\[A(\lambda, \alpha, \beta), \quad B(\lambda, \alpha, \beta), \quad C(\lambda, \alpha), \quad D(\lambda, \alpha), \quad E(\lambda). \]

By Theorem 3, we have completed the classification of the \(\mathbb{Z} \)-graded \(U_q(W) \)-modules \(V = \oplus_{k \in \mathbb{Z}} \mathbb{C}v_k \) which satisfy the condition that \(d_1 \) and \(d_{-1} \) are injective operators on \(V \).

Details of the proofs of these results will appear elsewhere.

References

Acknowledgment

I would like to thank Prof. R.V. Moody for his guidance on the work above.

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada, T6G 2G1

and

Department of Mathematics, Wuhan, P. R. China

\footnote{This is my mailing address.}

Received November 28, 1991
ON NOISY PATTERN MATCHING UNDER GEOMETRICAL CONSTRAINTS

Salvatore D. Morgera, F.I.E.E.E.

Presented by G.F.V. Duff, F.R.S.C.

Abstract: Noisy pattern matching problems arise in many areas, e.g., computational vision, astronomy, and high energy physics. Least-squares pattern matching over the Euclidean space \(\mathbb{E}^n \) for unordered sets of cardinality \(p \) is commonly formulated as a combinatorial optimization problem having complexity \(p \cdot p! \), \(p \gg n \). Since \(p \) may be \(10^3 \) or larger in typical applications, less than satisfactory suboptimal methods are usually employed. A powerful hybrid approach is described which casts the pattern matching problem in a differentiable setting using rigid motion constraints which often apply and reduces the complexity to \(l_{21} \cdot n^4 + l_{12} \cdot p^3 \), where \(l_{12} \) and \(l_{21} \) are the number of iterations required by steepest ascent and singular value decomposition (SVD)-based procedures, respectively.

1. Introduction. Given two sets of points in \(\mathbb{E}^n \), \(\{x_i : i = 1, 2, \ldots, p\} \) and a template \(\{y_i : 1, 2, \ldots, p\} \), we wish to match these patterns through a joint choice of \(\phi \in \Phi \), a representation of the orthogonal Lie group, and of \(\pi \in \Pi_p \), the set of all permutations of the integers \(\mathbb{Z}_p \). The model which we employ in this work is of the form \(x_{\pi(i)} = \phi(y_i) + b + n_i \), where \(b \) is a translation and the \(n_i \) are stochastic zero mean vectors which are mutually statistically independent, \(i = 1, 2, \ldots, p \). Without loss of generality, we set \(b = 0 \). Define the \((n \times p) \)-dimensional matrices \(X = [x_1 \, x_2 \cdots x_p] \) and \(Y = [y_1 \, y_2 \cdots y_p] \). Let the orthogonal Lie group act on \(\mathbb{E}^n \) according to \(\phi(x) \rightarrow \Theta^T x \), where \(\Theta \) belongs to an \(n \)-dimensional matrix Lie group \(O(n) \) for which \(\Theta^T \Theta = I \), and let \(\Pi \) be the \(p \)-dimensional permutation matrix which acts on \(\{x_i : i = 1, 2, \ldots, p\} \) according to \(\{x_{\pi(i)} : i = 1, 2, \ldots, p\} \rightarrow X\Pi \). Using a least-squares criterion, the function to be minimized with respect to \((\Theta, \Pi) \) is

\[
\varepsilon(\Theta, \Pi) = \sum_{i=1}^p \| \phi(x_{\pi(i)}) - y_i \|^2 = \| \Theta^T X\Pi - Y \|^2.
\]

An approach to minimizing (1) when the sets are ordered, i.e., when \(\Pi = I \), was first discussed by Nadás (1978) and, in a different context,
by Schwartz and Sharir (1985). In this case, the solution is of the form
\[\Theta^* = M^{-T}(M^TM)^{1/2}, \]
where \(M = XY^T \) and the square root is the symmetric, positive definite square root. Brockett (1989) was the first to treat the unordered pattern matching case described above; he assumes that the optimization problems in \(\Theta \) and \(\Pi \) are separable.

Investigations by Morgera and Lie Chin Cheong (1990) and Lie Chin Cheong and Morgera (1991) have rigorously shown that minimization of (1) can indeed be carried out in a separable manner by solving the following subproblems:

1. Find the orthogonal matrix \(\Theta^* \in O(n) \) which maximizes the function
 \[g(\Theta) = \sum_{i=1}^m \text{tr}[\Theta^TQ_i\Theta N_i], \]
 where \(Q_i = Q_i(X) \) and \(N_i = N_i(Y) \) are \(m \) appropriately chosen symmetric matrices.

2. Find the permutation matrix \(\Pi^* \) which maximizes the function \(f(\Pi) = \text{tr}[Z^*\Pi Y^T] \), where \(Z^* = \Theta^*TX \).

We note that if \(\phi(x) \) acts linearly, then the orthogonal Lie group acts on an element \(Q \) of the space of symmetric matrices via \(\phi(Q) = \Theta^TQ\Theta \). Step 1 results in a best least-squares match between \(m \) corresponding symmetric functions of the patterns, which are independent of \(\Pi \), while step 2 conducts a search for that permutation which minimizes (1). In step 1, the solution is unaltered if we set \(m = 1 \) and simply match the second moments of the patterns by using the symmetric matrices \(Q = XX^T \) and \(N = YY^T \). We have observed, however, that one advantage to using \(m > 1 \) symmetric functions in forming \(g(\Theta) \) is an improved convergence rate of the optimization process when a steepest ascent algorithm is used. At the optimum point, we have

\[\epsilon(\Theta^*,\Pi^*) = \text{tr}(Q + N) - 2\text{tr}[\Theta^*TX\Pi^*Y^T]. \]

The idea of formulating combinatorial optimization problems in a differentiable setting has far-reaching implications and is due to Karmarkar (1984).

2. Gradient Flow Fields. The gradient of \(g(\Theta) \), evaluated at \(\Theta \), can be found by considering a small, admissible perturbation of the form \(\Theta \rightarrow \Theta(I + t\Delta) \), where \(t > 0 \) and \(\Delta \) is in the Lie algebra of \(O(n) \). The gradient is given by

\[\lim_{t \rightarrow 0} \frac{g(\Theta(I + t\Delta)) - g(\Theta)}{t} = 2 \sum_{i=1}^m \text{tr}[N_i\Theta^TQ_i\Theta\Delta]. \]
The gradient (3) is proportional to the trace inner product of
\[\Sigma_{i=1}^{m} (\Theta^T Q_i \Theta N_i) \] and an element \(\Delta \) of the Lie algebra. As is well known, all elements of the Lie algebra associated with \(\mathcal{O}(n) \) are skew-symmetric. Projecting the gradient onto the tangent space at \(\Theta \), equating the result to \(\Theta^T \Theta \), and simplifying, results in the expression for the gradient flow field obtained by Brockett (1989),

\[\dot{\Theta} = \sum_{i=1}^{m} (Q_i \Theta N_i - \Theta N_i \Theta^T Q_i \Theta). \] (4)

From (4), the optimum solution is seen to satisfy \(\Sigma_{i=1}^{m} \Theta^T Q_i \Theta N_i = \Sigma_{i=1}^{m} N_i \Theta^T Q_i \Theta^* \), which cannot be explicitly solved for \(\Theta^* \). The nature of the search space can, however, be appreciated by letting \(m = 1 \) in \(\Theta(\Theta) \), defining \(Q \) and \(N \) as in Section 1, and further assuming that \(Q \) and \(N \) each have distinct eigenvalues. In this case, as \(\Theta \) varies over \(\mathcal{O}(n) \), a specialization by Brockett (1989) of the results of von Neumann (1937) for the unitary Lie group shows that \(\Theta(\Theta) \) has \(2^n \cdot n! \) stationary points, of which \(2^n \) are equivalued local minima and \(2^n \) are equivalued local maxima.

We now describe the manner in which the optimum permutation matrix \(\Pi^* \) may be found. Form the \(p \)-dimensional diagonal matrices \(D_{x_i} \) and \(D_{y_i} \), from the \(i \)th rows of \(Z^* \) and \(Y \), respectively, \(i = 1, 2, \ldots, n \). We may then write \(f(\Pi) \) as

\[f(\Pi) = \sum_{i=1}^{n} \text{tr}[\Pi^T D_{x_i} \Pi D_{y_i}]. \] (5)

It is seen that (5) is just a special case of the functional \(g(\Theta) \). In fact, since the permutation matrices are a subset of the orthogonal matrices, and, as pointed out by von Neumann (1937), a sufficient condition for a stationary point of \(g(\Theta) \) to be a permutation is that \(Q_i \) and \(N_i \) be of diagonal form, the same procedure described above may be applied to \(f(\Theta) = \sum_{i=1}^{n} \text{tr}[\Theta^T D_{x_i} \Theta D_{y_i}], \Theta \in \mathcal{O}(n), \) to find the gradient flow field. It is not difficult to show that the form of \(\Pi^* \) is that of a permuted diagonal square root of the identity matrix.

3. Matching Procedures. The steepest ascent method is, perhaps, the simplest procedure for finding an optimum point for those functionals described in Section 1. For example, the optimization procedure for \(g(\Theta) \) may be carried out using (4) in the following manner:

Procedure 1: Steepest Ascent Procedure

1. Choose an initial point, \(\Theta(0) \), such that \(0 < |\Theta(0)| < \xi/3, \; 0 < \xi < 1. \)
2. Choose \(0 < \mu < (1 - \xi)/\sum_{i=1}^{m} |Q_i||N_i|\).

3. For \(k = 0, 1, 2, \ldots\), compute

\[
A(k) = \sum_{i=1}^{m} Q_i \Theta(k) N_i
\]

\[
\Theta(k + 1) = \Theta(k) + \mu[A(k) - \Theta(k)A^T(k)\Theta(k)].
\]

Convergence details are discussed in Morgera and Lie Chin Cheong (1990) and Morgera (1991). In practice, the initial point, \(\Theta(0) \in O(n)\), is chosen to be of diagonal form. The iterative process is halted when \(|\Theta(k) - \Theta(k-1)| \leq \delta\), where \(\delta > 0\) is a suitably chosen tolerance. Essentially the same procedure may be employed to carry out the maximization of (5) with one important difference. The initial point must not be chosen to be of diagonal form to avoid convergence to a saddle point.

A more direct approach to the optimization problems may be taken using an SVD-based procedure as described in Lie Chin Cheong (1991). A description of the role that the SVD plays in a variety of statistical signal processing problems may be found in Scharf (1991). In the pattern matching problem, the SVD may be employed at each recursive step to compute the inverse positive definite square root matrix of a product of the form \(A^T A\), where \(A = A(\Theta) = \sum_{i=1}^{m} Q_i \Theta N_i\). Setting the gradient flow field (4) equal to zero and solving for \(\Theta^*\) in terms of \(A\) results in

\[
\Theta^* = A(\Theta^*)[A^T(\Theta^*)A(\Theta^*)]^{-1/2}.
\]

Using (8), the optimization procedure for \(g(\Theta)\) may be carried out in the following manner, where (10) employs the SVD:

Procedure 2: SVD-Based Procedure

1. Choose an initial point, \(\Theta(0)\).

2. For \(k = 0, 1, 2, \ldots\), compute

\[
A(k) = \sum_{i=1}^{m} Q_i \Theta(k) N_i
\]

\[
B(k) = [A^T(k)A(k)]^{-1/2}
\]

\[
\Theta(k + 1) = A(k)B(k).
\]

The update approach used in the above procedure is identical to one found in Armour and Morgera (1991). The procedure does not, in fact, require
that $A^T(k)A(k)$ be nonsingular, as the SVD computation of (10) can still be carried out in pseudoinverse form.

4. Computational Complexity. Let l_{ij} denote the number of iterations required by Procedure i of Section 3 to obtain a solution to a specified tolerance, δ_j, of subproblem j of Section 1, $i,j = 1,2$. Assume that a mult/div operation "costs" as much as an add/sub operation, and define the combined computational complexity for solution of the overall pattern matching problem using Procedure i as $C_i, i = 1,2$. We find that

$$C_1 \sim l_{11} \cdot mn^3 + l_{12} \cdot p^3$$

and that

$$C_2 \sim l_{21} \cdot (n^4 + mn^3) + l_{22} \cdot p^4,$$

where \sim denotes is the order of. Typically, $n \leq 4$ and $m \sim n$; in addition, we have observed from experiments that $l_{21} \ll l_{11}$ and that $l_{22} \approx l_{12}$. This leads to the interesting hybrid approach in which the SVD-based procedure is used to maximize $g(\Theta)$ and the steepest ascent procedure is used to maximize $f(\Pi)$. The computational complexity of this hybrid approach is then $C \sim l_{21} \cdot n^4 + l_{12} \cdot p^3$.

5. Experimental Results. The universe is a 128×128 pixel binary subimage of a NASA image of the nebulae North America (NGC 7000) in the constellation Cygnus. A noisy ($\sigma_n = 0.5$), rotated (10°), and permuted view of the same subimage is also shown. The subimages contain $p = 386$ (star) points in E^n which must be matched. The first l-s error plot shows that the solution of subproblem 1, Θ^*, was obtained after only 3 iterations of the SVD-based procedure. The second l-s error plot shows that convergence to the solution of subproblem 2, Π^*, is approximately the same using either procedure; however, special precautions were necessary to assure numerical precision in the SVD-based procedure due to the extremely large matrices in this example. The rapid convergence rate observed in the solution of subproblem 1 also appears to be independent of p. The overall result of the matching process results in a subimage virtually identical to the universe with a rotation accuracy well within the nebulae angular diameter of 1°.
REFERENCES

Information Networks and Systems Laboratory
Department of Electrical Engineering
McGill University
Montréal H3A 2A7 Québec
CANADA

Received January 7, 1992
TAME PRIMITIVITY FOR FREE NILPOTENT ALGEBRAS

Vesselin Drensky

Presented by C.K. Gupta, F.R.S.C.

Abstract. Let $F_n(\mathcal{N})$ be the free algebra of rank n with free generators x_1,\ldots,x_n in a nilpotent variety \mathcal{N} of linear algebras over a field of characteristic 0. Let as a GL_n-module $F_n(\mathcal{N}) \cong \sum m(\lambda)N_n(\lambda)$, where $m(\lambda)$ are non-negative integers and $N_n(\lambda)$ is the irreducible GL_n-module corresponding to the partition λ. Let c be a positive integer such that $\lambda = (\lambda_1,\ldots,\lambda_p)$ is a partition in $\leq c$ parts for all $m(\lambda) \neq 0$. Then for every primitive system $\{w_1,\ldots,w_m\}$ of $m \leq n - c$ elements in $F_n(\mathcal{N})$ there exists a tame automorphism $\phi \in \text{Aut}F_n(\mathcal{N})$ such that $\phi(x_j) = w_j$, $j = 1,\ldots,m$. Similarly, when the base field is arbitrary and the variety \mathcal{N} is nilpotent of class $c+1$, every primitive system of $m \leq n - c$ elements in $F_n(\mathcal{N})$ can be obtained by a tame automorphism.

Introduction

The starting point of this paper are two group theoretical results. Let F_n be the free group of rank n. C.K. Gupta, N.D. Gupta and V.A. Roman'kov [5] proved that any primitive system of m elements of the free metabelian nilpotent of class c group $M_{n,c} = F_n/\gamma_{c+1}(F_n)F'_n$, $m \leq n - 2$, can be lifted to a primitive system of F_n. C.K. Gupta and N.D. Gupta [4] established that any primitive system of m elements in the free nilpotent of class c group $F_{n,c} = F_n/\gamma_{c+1}(F_n)$, $m \leq n - c$, can also be lifted.

Our purpose is to obtain similar results for arbitrary varieties of nilpotent algebras. Let \mathcal{N} be a nilpotent variety of linear algebras over a field K of characteristic 0, i.e. there exists an integer s such that all products of length s vanish in the algebras from \mathcal{N}. Let $F_n(\mathcal{N})$ be the free algebra of rank n in \mathcal{N} freely generated by x_1,\ldots,x_n. We denote by T the group of the tame automorphisms of $F_n(\mathcal{N})$; T is generated by the invertible linear transformations on $\text{span}\{x_1,\ldots,x_n\}$ and the Jonquières automorphisms defined by $x_1 \rightarrow x_1 + f(x_2,\ldots,x_n)$, $x_j \rightarrow x_j$, $j > 1$, where $f(x_2,\ldots,x_n) \in F_n(\mathcal{N})$ does not depend on x_1.

By a result of P.M. Cohn [1], for Lie algebras T consists of all automorphisms which can

* This research was carried out when the author was an Alexander von Humboldt fellow in the University of Bielefeld, Germany.
be lifted to automorphisms of the free Lie algebra. A system \(w = \{w_1, \ldots, w_m\} \subset F_n(\mathfrak{N}) \) is primitive if it can be included in a set of free generators of \(F_n(\mathfrak{N}) \), i.e. there exists an automorphism \(\phi \in \text{Aut} F_n(\mathfrak{N}) \) such that \(\phi(x_j) = w_j, \ j = 1, \ldots, m. \) When there exists a tame automorphism with this property, we call the system \(w \) tamely primitive. An endomorphism \(\phi \) of a nilpotent algebra \(R \) is an automorphism if and only if \(\phi \) induces an automorphism on \(R/R^2 \). Hence the primitivity of \(w \subset F_n(\mathfrak{N}) \) is equivalent to its linear independence modulo \(F_n^2(\mathfrak{N}) \). In the case of Lie algebras the system \(w \) is tamely primitive if and only if \(w \) can be lifted to a primitive system of the free Lie algebra.

The general linear group \(GL_n \) acts on \(\text{span}\{x_1, \ldots, x_n\} \) and \(F_n(\mathfrak{N}) \) has a natural \(GL_n \)-module structure. The irreducible polynomial representations of \(GL_n \) are described by partitions. For a partition \(\lambda = (\lambda_1, \ldots, \lambda_p), \lambda_1 \geq \ldots \geq \lambda_p \geq 0 \), we denote by \(N_n(\lambda) \) the corresponding irreducible \(GL_n \)-module; \(N_n(\lambda) \) is isomorphic to a submodule of the tensor algebra of \(\text{span}\{x_1, \ldots, x_n\} \).

We prove the following result. Let \(F_n(\mathfrak{N}) \cong \sum m(\lambda)N_n(\lambda) \), where the multiplicities \(m(\lambda) \) are non-negative integers. If the integer \(c \) is such that \(m \leq n - c \) and for all \(m(\lambda) \neq 0 \) the partitions \(\lambda = (\lambda_1, \ldots, \lambda_p) \) satisfy \(p \leq c \), then every primitive system of \(m \) elements in \(F_n(\mathfrak{N}) \) is tame. The \(GL_n \)-module decomposition of \(F_n(\mathfrak{N}) \) is known for many varieties of algebras. If \(\mathfrak{N} = \mathfrak{N}_2 \cap \mathfrak{N}_s \) is the variety of metabelian nilpotent of class \(s \) Lie algebras, then \(c = 2 \) and we obtain a new proof of the result by the author [2] that the primitive systems of \(n - 2 \) elements in \(F_n(\mathfrak{N}_2 \cap \mathfrak{N}_s) \) are tame. A weaker version of the main result holds without restriction on the base field. If \(\mathfrak{N} \) is a nilpotent of class \(c + 1 \) variety of algebras over a field of arbitrary characteristic, then every primitive system of \(m \) elements in \(F_n(\mathfrak{N}) \) is tame for \(m \leq n - c \).

The main results

We fix a field \(K \) of characteristic 0, a nilpotent variety \(\mathfrak{N} \) of linear \(K \)-algebras and a positive integer \(n \). Let \(F = F_n(\mathfrak{N}) \). We denote by \(F^{[k]} \) the vector subspace of \(F \) of all homogeneous elements of degree \(k \) and by \(F^k \) the ideal \(\sum_{t \geq k} F^{[t]} \). Let

\[
IA_k = \{ \phi \in \text{Aut} F | \phi(x_j) \equiv x_j (\text{mod} F^k), \ j = 1, \ldots, n, \ k \geq 2, IA = IA_2. \]

The group \(\text{Aut} F \) is a split extension of \(IA \) by \(GL_n \). The action by conjugation of \(GL_n \) on \(IA_k/IA_{k+1} \) has the following useful description (see [3] for details). We consider the elements \((f_1, \ldots, f_n) \) of the vector space \((F^{[k]})^n \) as \(1 \times n \) matrices with entries from \(F^{[k]} \)
and $g \in GL_n$ as an $n \times n$ matrix. Let

$$g \ast (f_1, \ldots, f_n) = (f_1(g(x_1)), \ldots, g(x_n)), \ldots, f_n(g(x_1), \ldots, g(x_n)))g^{-1}.$$

With this GL_n-action $(F[H])^n$ is isomorphic to the tensor product of GL_n-modules $F[H] \otimes K$ spanx_1^*, \ldots, x_n^*, where $\{x_1^*, \ldots, x_n^*\}$ is the dual basis of $\{x_1, \ldots, x_n\}$. Let $\phi \in IA_k$, $\phi(x_j) \equiv x_j + f_j (mod F^{k+1})$, where $f_j \in F[H]$, $j = 1, \ldots, n$. We define a map

$$\nu_k : IA_k/IA_{k+1} \rightarrow (F[H])^n \text{ by } \nu_k(\bar{\phi}) = \nu_k(\phi IA_{k+1}) = (f_1, \ldots, f_n).$$

It turns out that ν_k is a group isomorphism and $\nu_k(g \bar{\phi}g^{-1}) = g \ast \nu_k(\bar{\phi})$, $\bar{\phi} \in IA_k/IA_{k+1}$, $g \in GL_n$. Hence we may consider IA_k/IA_{k+1} as a GL_n-module. For the group T of the tame automorphisms we denote $IT_k = T \cap IA_k$. Then IT_k/IT_{k+1} is a submodule of IA_k/IA_{k+1}.

Lemma. Let $\lambda = (\lambda_1, \ldots, \lambda_c)$, $\lambda_1 + \ldots + \lambda_c = k$, and let $N_n(\lambda)$ be an irreducible GL_n-submodule of $F[H]$. For every element $f \in N_n(\lambda)$ there exists a tame automorphism $\phi \in IT_k$ such that $\phi(x_{c+1}) \equiv x_{c+1} + f$, $\phi(x_j) \equiv x_j (mod F^{k+1})$, $j = c + 2, \ldots, n$.

Proof. Let $w_\lambda = w_\lambda(x_1, \ldots, x_c)$ be a non-zero element of $N_n(\lambda)$ which is homogeneous of degree λ_j in x_j, $j = 1, \ldots, c$; w_λ is unique up to a multiplicative constant and is the highest weight vector of $N_n(\lambda)$. Let ψ be the automorphism of F defined by $\psi(x_{c+1}) = x_{c+1} + w_\lambda(x_1, \ldots, x_c)$, $\psi(x_j) = x_j$, $j \neq c + 1$. Clearly $\psi \in IT_k$. It is a well known fact from the representation theory of GL_n that any irreducible polynomial GL_n-module N is spanned by $\{u(w) | u \in U_n^-\}$, where w is the highest weight vector and U_n^- is the group of the lower unitriangular matrices. There exist $u_1, \ldots, u_r \in U_n^-$ and $a_1, \ldots, a_r \in K$ such that $\sum_{i=1}^r a_i u_i (w_\lambda(x_1, \ldots, x_c)) = f$. Clearly

$$\nu_k(\psi) = (0, \ldots, 0, w_\lambda, 0, \ldots, 0)$$

and since u_i is a lower unitriangular matrix,

$$u_i \ast \nu_k(\psi) = (0, \ldots, 0, u_i(w_\lambda), 0, \ldots, 0)u_i^{-1} = (u_{i_1}, \ldots, u_{i_c}, u_i(w_\lambda), 0, \ldots, 0)$$

for some $u_i \in F[H]$. Hence there exists $\phi \in IT_k$ such that $\nu_k(\phi) = \sum_{i=1}^r a_i (u_i \ast \nu_k(\psi))$ and $\phi(x_{c+1}) \equiv x_{c+1} + f$, $\phi(x_j) \equiv x_j (mod F^{k+1})$, $j = c + 2, \ldots, n$.

Theorem 1. Let \mathfrak{N} be a nilpotent variety of linear algebras over a field of characteristic 0. If c is a positive integer such that $m \leq n - c$ and

$$F_n(\mathfrak{N}) \cong \sum m(\lambda_1, \ldots, \lambda_c)N_n(\lambda_1, \ldots, \lambda_c),$$
then every primitive system of m elements in $F_n(\mathfrak{N})$ is tame.

Proof. Let w be a primitive system of m elements in $F = F_n(\mathfrak{N})$. Without loss of generality we may assume that $m = n - c$ and $w = \{w_{c+1}, \ldots, w_n\}$. Since $F^{k+1} = 0$ for k large enough, it is sufficient to show by induction that for every integer $k \geq 1$ there exists a tame automorphism τ_k such that $\tau_k(x_j) \equiv w_j \pmod{F^{k+1}}$, $j = c + 1, \ldots, n$. The base of the induction is obvious. Since w_{c+1}, \ldots, w_n are linearly independent modulo F^2, there exists $\tau_1 = g \in GL_n \subset T$ such that $\tau_1(x_j) \equiv w_j \pmod{F^2}$, $j = c + 1, \ldots, n$. Assume that we have found $\tau_{k-1} \in T$ such that $\tau_{k-1}(x_j) \equiv w_j \pmod{F^k}$, $j = c + 1, \ldots, n$. If $v_j = \tau_{k-1}^{-1}(w_j)$, then $v_j \equiv x_j \pmod{F^k}$, i.e. $v_j \equiv x_j + f_j \pmod{F^{k+1}}$, $f_j \in F^1$, $j = c + 1, \ldots, n$. Let $F^1 = N_1 \oplus \cdots \oplus N_g$, where N_i are irreducible GL_n-submodules of F^1. Then $f_j = \sum_{i=1}^{g} f_{ij}$, where $f_{ij} \in N_i$, $i = 1, \ldots, g$, $j = c + 1, \ldots, n$. By the lemma, there exist tame automorphisms $\phi_{ij} \in IT_k$ such that $\phi_{ij}(x_j) \equiv x_j + f_j$, $\phi_{ij}(x_l) \equiv x_l \pmod{F^{k+1}}$, $l = c + 1, \ldots, n$, $l \neq j$. Hence the product $\phi = \prod_{j=c+1}^{n} \prod_{i=1}^{g} \phi_{ij}$ satisfies
\[
\phi(x_j) \equiv x_j + \sum_{i=1}^{g} f_{ij} \equiv x_j + f_j \pmod{F^{k+1}}, \ j = c + 1, \ldots, n.
\]
Defining $\tau_k = t_{k-1} \phi$ we obtain $\tau_k \in T$ and
\[
\tau_k(x_j) = \tau_{k-1}(\phi(x_j)) \equiv \tau_{k-1}(v_j) = w_j \pmod{F^{k+1}}, \ j = c + 1, \ldots, n.
\]

Examples. We give some examples for varieties of linear algebras when the integer c for the decomposition $F_n(\mathfrak{N}) \cong \sum m(\lambda)N_\lambda(\lambda)$, $\lambda = (\lambda_1, \ldots, \lambda_c)$, is known. Since there exist close relations between varieties of groups and Lie algebras, it seems to be interesting to find a group theoretical analogue of Theorem 1 in the cases (v) and (vi).

(i) The variety \mathfrak{N}_s of associative nilpotent of class s algebras. In the class of all associative algebras \mathfrak{N}_s is defined by the polynomial identity $x_1 \cdots x_s = 0$. It is known that $F_n(\mathfrak{N}_s) \cong \sum \deg(\lambda)N_\lambda(\lambda)$, where λ is a partition of $k = 1, \ldots, s - 1$ and $\deg(\lambda)$ is the degree of the corresponding S_k-character $\chi_k(\lambda)$. Therefore $c = s - 1$ and every primitive system of $n - s + 1$ elements in $F_n(\mathfrak{N}_s)$ is tame.

(ii) The variety $\mathfrak{N}_s \cap \mathfrak{A}$ of associative commutative nilpotent of class s algebras. As a subvariety of \mathfrak{N}_s from (i), $\mathfrak{N}_s \cap \mathfrak{A}$ is defined by $x_1x_2 - x_2x_1 = 0$. Since $F_n(\mathfrak{N}_s \cap \mathfrak{A})$ is a homomorphic image of the non-unitary polynomial algebra $K[x_1, \ldots, x_n]$, $F_n(\mathfrak{N}_s \cap \mathfrak{A}) \cong \sum_{k=1}^{n-1} N_n(k)$ and $c = 1$. Every primitive system of $n - 1$ elements is tame.

(iii) The variety \mathfrak{N}_s of all nilpotent of class s Lie algebras. In the class of Lie algebras \mathfrak{N}_s is defined by $[x_1, \ldots, x_{s+1}] = 0$. The free Lie algebra L_n is canonically embedded
into the free associative algebra $K(x_1,\ldots,x_n)$ and $F_n(\mathfrak{N}_s)$ is isomorphic to a submodule of $\sum \deg(\lambda)N_n(\lambda)$, λ being a partition of $k \leq s$. The only GL_n-submodule $N_n(1^k)$ of $K(x_1,\ldots,x_n)$ is generated by the standard polynomial which is not a Lie element. Therefore $N_n(1^k)$ does not participate in the decomposition of $F_n(\mathfrak{N}_s)$ and $c = s - 1$.

(iv) The variety $\mathfrak{A}^2 \cap \mathfrak{N}_s$ of metabelian nilpotent of class s Lie algebras. It is well known that $F_n(\mathfrak{A}^2 \cap \mathfrak{N}_s) \cong N_n(1) + \sum_{k>1}(N_n(k-1,1) + N_n(2k-2,1^2) + N_n(2n-1,2))$. Hence $c = 3$.

(v) Nilpotent subvarieties of the centre-by-metabelian variety of Lie algebras $[\mathfrak{A}^2, \mathfrak{C}]$. It can be obtained from a result of S.P. Mishchenko [6] that $F_n([\mathfrak{A}^2, \mathfrak{C}]) \cong N_n(1) + \sum_{k>1}(N_n(k-1,1) + N_n(2k-2,1^2) + N_n(2n-1,2))$. Hence $c = 3$.

(vi) Nilpotent subvarieties of the nilpotent of class s-by-abelian variety of Lie algebras $\mathfrak{N}_s\mathfrak{A}$. As a module $F_n(\mathfrak{N}_s\mathfrak{A})$ is isomorphic to $N_n(1) + \sum_{k=1}^p(L'_n)^k/(L'_n)^{k+1}$ and $(L'_n)^k/(L'_n)^{k+1}$ is spanned on commutators $[u_1,\ldots,u_k]$, where $u_i = [x_{i1},\ldots,x_{it}]$, $i_1 > i_2 < \cdots < i_t$, $t \geq 2$. It is easy to see that the GL_n-module $(L'_n)^k/(L'_n)^{k+1}$ is a homomorphic image of the tensor power $(L'_n/L''_n)^{\otimes k} = (\sum_{p>1}N_n(p-1,1))^{\otimes k}$. The Littlewood-Richardson rule gives that $N_n(p_1-1,1) \otimes \cdots \otimes N_n(p_k-1,1)$ is a sum of irreducible submodules $N_n(\lambda_1,\ldots,\lambda_{2k})$. Hence $c = 2s$ for any nilpotent subvariety of $\mathfrak{N}_s\mathfrak{A}$.

(vii) Let R be a finite dimensional algebra of dimension c. It is well known that $F_n(\text{var}\,R) \cong \sum \lambda \in \lambda N_n(\lambda)$ with $\lambda = (\lambda_1,\ldots,\lambda_c)$.

Till the end of the paper we consider algebras over an arbitrary field. For an algebra R we define $R^1 = R$ and inductively $R^k = \sum_{p+r=k} R^p R^r$. The algebra R is nilpotent of class s if $R^s = 0$. The following theorem is an exact ring theoretical analogue of [4].

Theorem 2. Let \mathfrak{N} be a nilpotent of class $c+1$ variety of algebras over an arbitrary field. Every primitive system on $n - c$ elements in $F_n(\mathfrak{N})$ is tame.

Proof. Let $F = F_n(\mathfrak{N})$ be freely generated by x_1,\ldots,x_n. As in the proof of Theorem 1, it is sufficient to show that for any monomial $u = u(x_1,\ldots,x_n)$ of length k, $2 \leq k \leq c$, and any $a \in K$ there exists a tame automorphism ϕ such that $\phi(x_{c+1}) = x_{c+1} + au$, $\phi(x_j) = x_j (\mod F^{k+1})$, $j > c + 1$. Let the degree of u in x_{c+1} is equal to p. We use induction on p. For $p = 0$ we define ϕ by $\phi(x_{c+1}) = x_{c+1} + au$, $\phi(x_j) = x_j$, $j \neq c + 1$. Since u does not depend on x_{c+1}, ϕ is tame. Let $p > 0$. Hence $k - p < c$ and u does not depend on a variable x_1,\ldots,x_c. Let for example $u = u(x_2,\ldots,x_n)$. We define $\psi \in T$, $\psi(x_1) = x_1 - au(x_2,\ldots,x_n)$, $\psi(x_2) = x_2, j \neq 1$, and $g \in GL_n$, $g(x_{c+1}) = x_1 + x_{c+1}$,
$g(x_j) = x_j$, $j \neq c + 1$. Easy calculations show that

$$g \psi g^{-1}(x_{c+1}) = x_{c+1} + au(x_2, \ldots, x_c, x_1 + x_{c+1}, x_{c+2}, \ldots, x_n),$$

$$g \psi g^{-1}(x_j) = x_j, j > c + 1.$$

Clearly $u(x_2, \ldots, x_c, x_1 + x_{c+1}, x_{c+2}, \ldots, x_n) = u(x_2, \ldots, x_{c+1}, \ldots, x_n) + v(x_1, \ldots, x_n)$, where $v(x_1, \ldots, x_n)$ is a linear combination of monomials with degree in x_{c+1} less than p. By induction, there exists a tame automorphism θ such that $\theta(x_{c+1}) \equiv x_{c+1} + av(x_1, \ldots, x_n), \theta(x_j) \equiv x_j (\text{mod} F^{k+1})$, $j > c + 1$, and $\phi = g \psi g^{-1} \theta$ is the desired tame automorphism.

Acknowledgements

The author is very grateful to C.K. Gupta for the stimulating discussions.

References

2. V. Drensky, Lifting of primitivity for free metabelian nilpotent Lie algebras, preprint.

Institute of Mathematics, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., block 8, 1113 Sofia, Bulgaria

Received January 31, 1992
Nielsen type numbers for:- fibre preserving maps, coincidences of fibre preserving maps, and for periodic points of fibre preserving maps

Philip R. Heath

Presented by S. Halperin, F.R.S.C.

Abstract

In this note we announce results concerning three kinds of Nielsen type numbers. Firstly a Nielsen type number for fibre preserving maps ([H2]), secondly a Nielsen type number for fibre preserving coincidences of fibre preserving maps, and thirdly Nielsen type numbers for periodic points of fibre preserving maps. Each number is an appropriate lower bound for the number of fixed points, respectively coincidences, respectively periodic points, within the fibre homotopy classes of the maps involved. Moreover each number shares with the usual Nielsen number such properties as homotopy invariance and commutativity.

Key words: Nielsen Numbers, coincidences, periodic points, fibre spaces.
AMS subject classifications: primary 55M20, secondary 55R05.

1 A Nielsen type number for fibre preserving maps

Much has been written about the ordinary Nielsen number of a fibre map (see for example [B], [BF], [Y], [J], [H] etc.). The idea has been to produce a product formula writing the Nielsen number of the map between the total space in terms of (appropriate) Nielsen numbers of the maps between the base

1The full text of the ideas from this section will appear in [H2].
and fibre. Of necessity the maps and homotopies involved in such calculation have to be fibre preserving. What has been calculated then is the Nielsen number of a fibre preserving map, but without exploiting any advantage that the restriction 'fibre preserving' might bring. The following example, which is an adaption of one given in [BF], illustrates this advantage, showing that the ordinary Nielsen number can be a poor lower bound for the least number of fixed points of a fibre preserving map.

Example 1.1 Let $S^1 \to S^3 \to S^2$ be the Hopf fibration, where S^1 is the fibre over a point $b \in S^2$. Let $f : S^1 \to S^1$ be a fibre preserving map of p with induced map $\bar{f} : S^2 \to S^2$. Suppose that \bar{f} has degree $d \neq \pm 1$, with b as a fixed point. Then f restricts to a self map $f_b : S^1 \to S^1$ of the fibre. It is easy to see that the degree of f_b is d. Now f can be regarded as a self map of the pair (S^3, S^1), and so according to relative Nielsen theory ([Sc]) has at least $N(f; S^3, S^1) = N(f_b) = |1 - d|$ fixed points (use [Sc; Theorem 2.6]). Here $N(f; S^3, S^1)$ is the relative Nielsen number of the map f of the pair (S^3, S^1). On the other hand since $L(f) = 1 - d^2 \neq 0$, then $N(f) = 1$.

Let $p : E \to B$ be a fibration in which E, and B are compact connected ANR’s, then every fibre of p is also a compact connected ANR. If (f, \bar{f}) is a fibre preserving map of p, (that is $pf = \bar{f}p$), and $b \in \Phi(\bar{f})$ (the fixed point set of \bar{f}), then the restriction of f_b of f to $p^{-1}(b) := F_b$ is a self map, and hence has its own Nielsen number $N(f_b)$.

Definition 1.2 Let (f, \bar{f}) be a fibre preserving map from p to itself, we say that (f, \bar{f}) is essentially fibre uniform, if $N(f_b)$ is independent of b in any essential class of \bar{f}.

$N(f_b)$ is independent of b within a single Nielsen class of \bar{f}, so (f, \bar{f}) is essentially fibre uniform if $N(\bar{f}) = 0$, or 1. In addition (f, \bar{f}) is essentially fibre uniform for all (f, \bar{f}) if p is orientable (in the homotopy sense) (see [Se], [J], [Y] or [H]). In particular (f, \bar{f}) is essentially fibre uniform if p is a trivial fibration or if B is simply connected, or if p is a principal bundle with path connected structure group [Se;p.445].

Definition 1.3 Let (f, \bar{f}) be a fibre preserving map of p which is essentially fibre uniform then the Nielsen type number $N_\tau(f, p)$ of (f, \bar{f}) is the number $N(\bar{f})N(f_b)$, where $N(f_b)$ is the Nielsen number of the restriction of f to the fibre over any point b in any essential class of \bar{f}.
The reader will notice the similarity of the definition of $N_{F}(f, p)$ with the so called naïve product formula for fibre maps due originally to Brown in [B], (see comments of Jiang [J;p. 87]). It seems to this author that our Nielsen type number expresses, but now accurately, the intuition Brown had when he was trying to write down his product formula [B]. In particular we have:

Theorem 1.4 Let p be a fibration, and (f, \tilde{f}) a self fibre preserving map that is essentially fibre uniform, then the number $N_{F}(f, p)$ is a lower bound for $M_{F}(f, p)$, where $M_{F}(f, p) = \min\{\#(g) \colon g \text{ is fibre homotopic to } f\}$.

The proofs of 1.4, and the following proposition exhibit and exploit a connection between $N_{F}(f, p)$ and relative Nielsen theory. In fact $N_{F}(f, p)$ can be shown to be the relative Nielsen number of f taken with respect to a certain subspace of E.

Proposition 1.5 Let (f, \tilde{f}) be a self fibre preserving map of a fibration p that is essentially fibre uniform, then

(i) $N_{F}(f, p) \geq N(f)$, and if $N(f) = 0$ or $N(\tilde{f}) = 0$, or $N(f_{b}) = 0$, then equality holds.

(ii) If $N(\tilde{f}) \neq 0$, then for any b in any essential class of f we have that

$$N_{F}(f, p) \geq N(f; E, F_{b}) \geq N(f_{b}).$$

Using a theorem of You [Y], we are able to give necessary and sufficient conditions for $N_{F}(f, p)$ and $N(f)$ to coincide.

Following [F], we call a space X, for which an index is defined, a Wecken space if, for every map $f : X \to X$, there exists a map $g : X \to X$ homotopic to f, and with the property that g has exactly $N(f)$ fixed points. It is known that every compact connected polyhedron without local cut points is a Wecken space, if it is not a surface of negative Euler characteristic (see [J2;p.760] and [Sc2;Lemma 2,p 525]).

We use the theory of cofibrations to prove:-

Theorem 1.6 Let (f, \tilde{f}) be a fibre preserving map from p to itself that is essentially fibre uniform, and with the property that B and every fibre of p is a Wecken space, then there is a fibre preserving map (g, \tilde{g}) that is fibre homotopic to (f, \tilde{f}) and with the property that g has exactly $N_{F}(f, p)$ fixed points.
2 A fibred Nielsen coincidence number

If \(f, g : X \to Y \) are maps a coincidence of \(f \) and \(g \) is a point \(x \in X \) with \(f(x) = g(x) \). Coincidence theory is a generalization of fixed point theory where \(g \) is taken to be the identity. If \(X \) and \(Y \) are compact connected orientable \(n \)-dimensional manifolds without boundary, then there is a Nielsen coincidence number \(N(f, g) \) that is a lower bound for the number \(M(f, g) = \min \{ \# C(f', g') \} \), where \(C \) denotes 'the set of coincidences of', and where \(f' \) and \(g' \) are homotopic to \(f \) and \(g \) respectively. We will be considering locally trivial bundles \((E, p, B)\) and \((E', p', B')\) in which the total spaces, bases and all fibres are compact connected closed orientable topological manifolds with respectively equal dimensions.

In a recent publication \([\text{Je}]\), Jezierski gives a product formula for the Nielsen coincidence number of a fibre preserving map. His work generalizes (among other things) the work of Chengye You \([\text{Y}]\). Jezierski shows for a pair of fibre preserving maps \((f, \bar{f})\) and \((g, \bar{g})\) from \(p \) to \(p' \) as above, that one can write the Nielsen coincidence number \(N(f, g) \) in terms of (appropriate) Nielsen coincidence numbers of the base and fibre. Inspired by Jezierski's work we generalize our theory of Nielsen type numbers of fibre preserving maps and define a Nielsen coincidence number of fibre preserving maps as follows:

Definition 2.1 Let \((f, \bar{f}), (g, \bar{g}) : p \to p'\) be a pair of fibre preserving maps of \(p \) and \(p' \) as above, and suppose that \((E', p', B')\) is orientable, then the fibred Nielsen coincidence number \(N_\mathcal{X}(f, g) \) of \((f, \bar{f})\) and \((g, \bar{g})\) is the number \(N(\bar{f}, \bar{g})N(f_b, g_b) \), where \(N(f_b, g_b) \) is the Nielsen coincidence number of the restrictions of \(f \) respectively \(g \) to the fibre over any point \(b \) in any essential coincidence class of \(\bar{f} \) and \(\bar{g} \).

Let \(M_\mathcal{X}(f, g) \) be the fibred version of \(M(f, g) \) (compare 1.4) then we have:

Theorem 2.2 Under the hypotheses of definition 2.1 we have that \(N_\mathcal{X}(f, g) \) is a lower bound of \(M_\mathcal{X}(f, g) \).

Comparison theorems of the type outlined in section 1 are forthcoming, together with theorems of the usual type concerning homotopy invariance and commutativity. Proofs here are variants of those indicated in section 1, since relative Nielsen theory for coincidences does not precisely generalize ordinary Nielsen theory.
3 Nielsen type numbers for periodic points of fibre preserving maps

Let \(f : X \rightarrow X \) be a given self map of a compact connected ANR \(X \), and \(n \) a positive integer. The fixed points of the iterates of \(f \) are called periodic points. Let \(P_n(f) \) denote the set of periodic points of \(f \) of least period \(n \). In [J], [HPY] and [HY] Nielsen type numbers \(NP_n(f) \), and \(NF_n(f) \) have been give that are lower bounds for the numbers \(MP_n(f) = \min\{\#P_n(g) : g \simeq f\} \), and \(M\Phi_n(f) = \min\{\#\Phi(g^n) : g \simeq f\} \).

Definition 3.1 Let \((f,\tilde{f})\) be a fibre preserving map of a fibration \(p \) which is orientable then the Nielsen type number \(NP_p^n(f, p) \) of \((f,\tilde{f})\) is the number \(NP_n(f)pN((f^n)b) \), where \(N((f^n)b) \) is the Nielsen number of the restriction of \(f^n \), the \(n \)th iterate of \(f \), to the fibre over any point \(b \) in any essential class of \(f^n \).

As usual we have a lower bound theorem.

Theorem 3.2 Under the hypotheses of definition 3.1 we have that the number \(NP_p^n(f, p) \) is a lower bound for \(MP_p^n(f, p) \), where \(MP_p^n(f, p) \) is the fibred version of \(MP_n(f) \).

The definition and properties of the number \(N\Phi_p^n(f, p) \) are more difficult to summarize, we do have however that

Theorem 3.3 \(M\Phi_p^n(f, p) \geq \sum_{m|n} NP_p^n(f, p) \).

References

Philip R. Heath
Department of Mathematics,
Memorial University of Newfoundland,
Newfoundland, A1C 5S7
Canada

Received February 19, 1992
Abstract: We present optimal asymptotic results for the weighted L_p-distance, $0 < p < \infty$, of the partial sum process of independent identically distributed random variables. We consider also L_p-functionals of other processes which are of interest in changepoint analysis.

1. Introduction. Let X_1, X_2, \ldots be independent, identically distributed random variables with $EX_1 = 0$ and $EX_1^2 = 1$. The weak convergence of the weighted partial sum process $n^{-1/2}S_{[nt]} / q(t)$, $0 < t \leq 1$, where $S_{[nt]} = X_1 + \ldots + X_{[nt]}$, in supremum norm was proved by O'Reilly (1974) for continuous weight functions under the assumption of $E|X_1|^3 < \infty$. He asserted also, without proof, that the third moment condition could be dropped to two, and his theorem would remain true.

For an extension of the Komlós, Major and Tusnády (1975, 1976) approximation of partial sums to weighted supremum norm approximations which improve also the just mentioned result of O'Reilly (1974) in terms of the optimal class of weight functions as in Csörgő, Csörgő, Horváth and Mason (1986), we refer to Csörgő and Horváth (1988b) and the references given there.

Assuming the existence of two moments only, Szyszkowicz (1991b) obtained the following weighted supremum norm approximation (cf. Theorem 2.1 and Remark 2.2 there).

Let Q be the class of positive functions on $(0,1]$, i.e., $\inf_{0 \leq t \leq 1} q(t) > 0$ for all $0 < \delta < 1$, which are nondecreasing in a neighbourhood of zero. Let also

$$I(q,c) = \int_0^1 t^{-1} \exp(-ct^{-1}q^2(t))dt, \ c > 0.$$

THEOREM A. Let X_1, X_2, \ldots be i.i.d.r.v.'s such that $EX_1 = 0$ and $EX_1^2 = 1$. Then a standard Wiener process $\{W(t), 0 \leq t < \infty\}$ can be constructed in such a way that the following hold true.

(a) Let $q \in Q$. Then

$$\sup_{0 < t \leq 1} |n^{-1/2}(S_{[nt]} - W(nt))/q(t)| = o_p(1)$$

if and only if $I(q,c) < \infty$ for all $c > 0$.

Presented by Miklós Csörgő, F.R.S.C.
(b) Let \(q \in Q \). Then
\[
\sup_{0 \leq t \leq 1} |n^{-1/2}(S_{[nt]} - W(nt))/q(t)| = O_P(1)
\]
if and only if \(I(q, c) < \infty \) for some \(c > 0 \).

We note that part (a) of Theorem A gives the limiting distribution of any continuous in sup-norm functional of \(n^{-1/2}S_{[nt]}/q(t) \) whenever \(I(q, c) < \infty \) for all \(c > 0 \).

Here we consider the asymptotic behaviour of \(L_p \)-approximations and functionals of weighted partial sum processes and obtain the following result.

Theorem 1.1 Let \(X_1, X_2, \ldots \) be i.i.d. r.v.'s such that \(EX_1 = 0 \) and \(EX_1^2 = 1 \). We assume that \(0 < p < \infty \) and \(q \in Q \).

(a) A standard Wiener process \(\{W(t), \ 0 \leq t < \infty\} \) can be constructed in such a way that
\[
\int_0^1 |n^{-1/2}(S_{[nt]} - W(nt))/q(t)|^p \, dt = o_P(1)
\]
if and only if
\[
(1.1) \quad \int_0^1 t^{p/2}/q(t) \, dt < \infty.
\]

(b) Let \(\{W(t), \ 0 \leq t < \infty\} \) be a standard Wiener process. Then
\[
\int_0^1 |n^{-1/2}S_{[nt]}|^p/q(t) \, dt \overset{D}{\to} \int_0^1 |W(t)|^p/q(t) \, dt
\]
if and only if (1.1) holds.

Weighted \(L_p \)-approximations of the empirical and quantile processes were studied by Csörgő, Horváth and Shao (1991).

We call attention to the fact that (a) and (b) of Theorem 1.1 are equivalent. The above theorem enables us to obtain also other results of interest.

2. \(U \)-statistic type processes. In the context of the so-called changepoint problem, Csörgő and Horváth (1988a) study tests based on processes of \(U \)-statistics which are generalizations of Wilcoxon-Mann-Whitney type statistics. They consider

\[
Z_k = \sum_{1 \leq i \leq k} \sum_{k+1 \leq j \leq n} h(X_i, X_j), \quad 1 \leq k < n,
\]
where \(h(x, y) \) is a symmetric or an antisymmetric function and study its limiting behaviour in unweighted and weighted sup-norm metrics. Typical choices of \(h \) are \(xy, (x - y)^2/2 \) (sample variance), \(|x - y| \) (Gini's mean difference), \(\text{sign}(x + y) \) (Wilcoxon's one-sample statistic) (cf. Serfling, 1980). Taking \(h(x, y) = x - y \) gives \(Z_k \) equal to \(n(S_k - \frac{k}{n}S_n) \), or, equivalently, to

\[
k(n - k)\left(\frac{1}{k} \sum_{i=1}^{k} X_i - \frac{1}{n - k} \sum_{i=k+1}^{n} X_i\right).
\]

The case of \(h(x, y) = \text{sign}(x - y) \) (cumulative rank tests) has gained special attention in the literature. For reviews of results concerning changepoint problems, we refer to Csörgő and Horváth (1988b) and the references given there.

Let \(X_1, X_2, \ldots \) be independent identically distributed random variables. We assume that \(h \) is a symmetric function, i.e., \(h(x, y) = h(y, x) \), and that

\[
(2.2) \quad E h^2(X_1, X_2) < \infty.
\]

We let \(E_h(X_1, X_2) = \theta, \tilde{h}(t) = E\{h(X_1, t) - \theta\} \). Condition (2.2) implies that \(E\tilde{h}^2(X_1) < \infty \) and we assume

\[
(2.3) \quad 0 < \sigma^2 = E\tilde{h}^2(X_1).
\]

We consider the following process

\[
U_k = Z_k - k(n - k)\theta, \quad 1 \leq k < n,
\]

introduced by Csörgő and Horváth (1988a), which they expressed as a linear combination of \(U \)-statistics. Hence the study of \(U_k \) can be based on the projection of a \(U \)-statistic on the basic observations (cf. Chap. 5 of Serfling, 1980).

Let \(Q^* \) be the class of positive functions on \((0, 1)\) i.e. \(\inf_{\delta \leq t \leq 1 - \delta} q(t) > 0 \) for all \(\delta \in (0, 1/2) \), which are nondecreasing near zero and nonincreasing near one. We define the Gaussian process \(\Gamma \) by

\[
\Gamma(t) = (1 - t)W(t) + t\{W(1) - W(t)\}, \quad 0 \leq t \leq 1,
\]

where \(\{W(t), 0 \leq t < \infty\} \) is a Wiener process.

Theorem 2.1 We assume that (2.2) and (2.3) hold and \(0 < p < \infty \).

(a) We can define a sequence of Gaussian processes \(\{\Gamma_n(t), 0 \leq t \leq 1\} \) such that for each \(n \geq 1 \) \(\{\Gamma_n(t), 0 \leq t \leq 1\} \overset{D}{=} \{\Gamma(t), 0 \leq t \leq 1\} \) and with \(q \in Q^* \) we have

\[
\int_0^1 \left| \frac{n^{-3/2}}{\sigma} U_{(n+1)t} - \Gamma_n(t) \right|^p q(t) dt = o_p(1)
\]
if and only if

\[(2.4) \quad \int_0^1 (t(1 - t))^{p/2} / q(t) \, dt < \infty.\]

(b) If \(q \in Q^* \), then

\[
\int_0^1 \left| \frac{n^{-3/2}}{\sigma} \mathcal{U}_{(n+1)} - B_n(t) \right|^p \, \frac{1}{q(t)} \, dt \converges \int_0^1 |\Gamma(t)|^p / q(t) \, dt
\]

if and only if \((2.4)\) holds.

When considering an antisymmetric kernel, i.e. \(h(x, y) = -h(y, x) \), similar type of results hold. However the limiting process is different. In this case \(Eh(X_1, X_2) = 0 \) and, as in the symmetric case, we let \(\tilde{h}(t) = Eh(t, X_1) \). We assume

\[(2.5) \quad Eh^2(X_1, X_2) < \infty \quad \text{and} \quad 0 < \sigma^2 = Eh^2(X_1).\]

Now we have \(U_k = Z_k \), where \(Z_k \) is defined by \((2.1)\).

Theorem 2.2. We assume that \((2.5)\) holds and \(0 < p < \infty \).

(a) We can define a sequence of Brownian bridges \(\{B_n(t), 0 \leq t \leq 1\} \) such that with \(q \in Q^* \) we have

\[
\int_0^1 \left| \frac{n^{-3/2}}{\sigma} \mathcal{U}_{(n+1)} - B_n(t) \right|^p \, \frac{1}{q(t)} \, dt = o_p(1)
\]

if and only if \((2.4)\) holds.

(b) If \(q \in Q^* \) then

\[
\int_0^1 \left| \frac{n^{-3/2}}{\sigma} \mathcal{U}_{(n+1)} \right|^p \, \frac{1}{q(t)} \, dt \converges \int_0^1 |B(t)|^p / q(t) \, dt
\]

if and only if \((2.4)\) holds.

The weighted approximation results for \(U_k \) process in supremum norm were proved by Csörgő and Horváth (1988a), assuming \(E|h(X_1, X_2)|^\nu < \infty \) for some \(\nu > 2 \), and were extended to contiguous alternatives by Szyszkowicz (1991a). These results were reproved by Szyszkowicz (1991b) under the initial assumption of two moments only for an unweighted approximation (cf. Theorems 2.1 and 4.1 of Csörgő and Horváth, 1988a).

3. Sequential ranks. Let \(X_1, X_2, \ldots \) be independent continuously distributed random variables and let \(\xi_1, \ldots, \xi_n \) denote the normalized sequential ranks

\[
\xi_k = k^{-1} \sum_{i=1}^k \mathbf{1}\{X_i < X_k\}, \quad k = 1, \ldots, n,
\]
of the first \(n \) of the random variables \(X_1, X_2 \ldots \).

Statistical tests based on sequential ranks are frequently used because of their convenient properties. Bhattacharya and Frierson (1981) propose a nonparametric control chart based on partial sums of sequential ranks for detecting small changes in the distribution of a random sample. Khmaladze and Parjanadze (1986) study changepoint problems under contiguous alternatives using linear statistics of sequential ranks. They consider the process

\[
 n^{-1/2} \sum_{i=1}^{[nt]} a(\xi_k), \quad 0 \leq t \leq 1
\]

for \(a \in L^2(0,1) \) and such that \(\int_0^1 a(u)du = 0 \), where \(\xi_1, \xi_2, \ldots \) are normalized sequential ranks. Szyszkowicz (1991b) extends their results in supremum norm to using weight functions. For further results along these lines we refer to Lombard (1983). Here we present the following description of the asymptotic behaviour of \(L_p \)-functionals of the process \(\{ n^{-1/2} \sum_{i \leq nt} a(\xi_k)/q(t), 0 < t < 0 \} \).

Let \(Q \) be the class of functions \(q \) as defined in Section 1.

Theorem 3.1 Let \(0 < p < \infty \). We assume that \(a \in L^2[0,1] \), where \(\int_0^1 a(u)du = 0 \), \(\int_0^1 a^2(u)du = 1 \) and \(a(u) \) has a uniformly bounded derivative on \([0,1] \).

(a) Let \(q \in Q \). Then there exists a sequence of Wiener processes \(\{W_n(t), 0 \leq t \leq 1\} \) such that

\[
 \int_0^1 \left| n^{-1/2} \sum_{i=1}^{[nt]} a(\xi_i) - W_n(t) \right|^p / q(t) dt = o_P(1)
\]

if and only if (1.1) holds.

(b) If \(q \in Q \), then

\[
 \int_0^1 \left| n^{-1/2} \sum_{i=1}^{[nt]} a(\xi_i) \right|^p / q(t) dt \overset{p}{\rightarrow} \int_0^1 |W(t)|^p / q(t) dt
\]

if and only if (1.1) holds.

Acknowledgements This research was financially supported by an NSERC Canada Postgraduate Scholarship and a scholarship from the Faculty of Graduate Studies and Research of Carleton University, Ottawa. These results constitute a part of the author's Ph.D. dissertation in preparation. The author wishes to acknowledge her gratitude for the guidance and continued advice of Professor Miklós Csörgő.
REFERENCES

DEPARTMENT OF MATHEMATICS & STATISTICS
CARLETON UNIVERSITY
OTTAWA, ONTARIO K1S 5B6
CANADA

Received February 20, 1992
Large Deviations For Markov Processes With Mean Field Interaction And Unbounded Jumps

Shui Feng

Presented by D.A. Dawson, F.R.S.C.

Abstract: An N-particle system with mean field interaction is considered. Large deviation estimates for the empirical distributions as N goes to infinity are obtained under conditions which are satisfied by many interesting models including the first and the second Schrögl models.

1. Introduction

Let \(E = \{0,1,...\}, E^{\otimes N} \) be the N-fold product of \(E \). \(z^{(N)}(t) = (z_1^{(N)}(t),...,z_N^{(N)}(t)) \) on \(E^{\otimes N} \) is a Markov process generated by

\[
\begin{align*}
\Omega^{(N)} \psi(z^{(N)}) &= \sum_{k=1}^{N} Q_{k}^{(N)} \psi(z^{(N)}) \\
\end{align*}
\]

where \(\varepsilon^{(N)} = \frac{1}{N} \sum_{k=1}^{N} \delta^{(N)}_{x_k^{(N)}} \), \(z^{(N)} = (z_1^{(N)},...,z_N^{(N)}) \in E^{\otimes N} \). \(Q \) is defined by

\[
Q_\nu f(x) = \sum_{y \in E} q_{x,y} (f(y) - f(x)) + ||\nu|| (f(x + 1) - f(x))
\]

\[
Q = (q_{x,y}) \text{ is a } Q\text{-matrix. } ||\nu|| \text{ is the first moment of } \nu. \ Q_\nu^{(k)} \text{ is used instead of } Q_\nu \text{ when it acts on the } k\text{-th variable of } \psi \in C(\mathcal{E}^{\otimes N}).
\]

This is an N-particle system with mean field interaction. The jump rates \(q_{i,j} \) can be unbounded. Consider the empirical distribution \(\eta_{z^{(N)}}(\cdot) \) of the N-particle system

\[
\begin{align*}
\eta_{z^{(N)}}(\cdot) &= \frac{1}{N} \sum_{k=1}^{N} \delta_{x_k^{(N)}}(\cdot) \\
\end{align*}
\]

This is a random measure on \(D([0,T],E) \), the space of all right continuous functions \(\omega: [0,T] \to E \) which have left limits at each \(t \in (0,T) \) and are left continuous at \(T \) with the
Skorohod metric \(d \) on it. \(\delta_x \) denotes the Dirac distribution on path \(x(\cdot) \). Assume, \(N \geq 1 \), that \((x_1^{(N)}(0), \ldots, x_N^{(N)}(0)) \) are independent and identically distributed with common distribution \(u \in M_1(E) \) (the set of all probability measures on \(E \)). We prove that \(\eta_{x^{(N)}(\cdot)} \) converges in law to a certain measure on \(D([0,T], E) \) whose marginal distribution is a solution of the following nonlinear master equation

\[
\frac{du(t)(\cdot)}{dt} = \sum_{y \neq \cdot} \{u(t)(y)q_{y,\cdot} - u(t)(\cdot)q_{\cdot,y}\} + \|u(t)\| \{u(t)(\cdot - 1) - u(t)(\cdot)\}.
\]

The main topic of the present paper is the large deviation problem for the distributions of \(\eta_{x^{(N)}(\cdot)} \) as \(N \) goes to infinity.

Several recent papers have discussed similar kind of large deviation problem for related models. Among them see for instance [1], [2], [3] and [4]. However this paper is the first to obtain the complete large deviation principle for Markov process with mean field interaction and unbounded jumps.

Proofs, as well as further details, will appear in a forthcoming paper by the author.

2. Notation and Preliminary. Let \(E \) be equipped with the discrete topology and \(\rho \) be the discrete metric. For fixed \(T > 0 \), let \(D = D([0,T], E) \). For each \(t \geq 0 \), let \(\mathcal{F}_t = \sigma\{x(s) : 0 \leq s \leq t\} \). \(\mathcal{M} = M_1(D) \) denotes the space of all probability measures on \(D \) with weak topology. For each \(R \geq 1 \), define \(\mathcal{M}_R = \{ P \in \mathcal{M} : \sup_{0 \leq t \leq T} \int \varphi(\omega(t))P(d\omega) \leq R \} \) equipped with the subspace topology of \(\mathcal{M} \), where \(\varphi \) is defined as \(\varphi : E \to \mathbb{R}, z \mapsto 1 + z \log \log(z + 2) \).

Let \(\mathcal{M}_\infty = \bigcup_{R \geq 1} \mathcal{M}_R \) be equipped with the "inductive topology". By definition, a set \(V \) is open in \(\mathcal{M}_\infty \) if and only if \(V \cap \mathcal{M}_R \) is open in \(\mathcal{M}_R \) for each \(R \geq 1 \). The "inductive topology" is stronger than the weak topology and \(\mathcal{M}_\infty \) is not a Polish space. Let \(Q = (q_{x,y})_{x,y \in E} \) be a totally stable conservative \(Q \)-matrix satisfying:

\[
\inf_{x \in E} \{q_{x,x+1}\} > 0
\]

\[
\exists \Lambda > 0 \text{ such that } q_{x,y} = 0 \text{ for } |x - y| \geq \Lambda.
\]

\[
\forall x \in E, \exists \lambda > 0 \text{ such that } \sum_{y \in E} q_{x,y}(y - x) \leq \lambda x, \sum_{x,y} q_{x,y}(\varphi(y) - \varphi(x)) \leq \lambda \varphi(x)
\]

\[
\exists 0 < c < \infty, \text{ such that } \forall x, y \in E, y > x,
\]
\(\sum_{x \neq y} (q_{x,y} + y - q_{x,y + 1}) \)

\[+ 2 \sum_{i=1}^{\infty} [(q_{x,x-i} - q_{x,x-i+1}) \vee 0 + (q_{x,y} + q_{x,y-x} + q_{y,x-x}) \vee 0] z \leq e(y - x) \]

(2.5) \(\forall i \geq 0, \exists \lambda(i) > 0, \exists \)

\[\sup_{x \in E} \max \{ \sum_{y \in E} q_{x,y}(e^{y-x} - 1) + (e - 1)x, \sum_{y \in E} q_{x,y}(e^{y(x)} - 1) + (e^{x+1} - e^y(x) - 1) I \} \leq \lambda(i). \]

Remark. Conditions (2.3) and (2.4) guarantee that the corresponding martingale problems are well-posed. Conditions (2.1),(2.2) and (2.5) are needed only for the large deviation result.

These conditions are satisfied by the following two Schlögl models. (cf. [5])

The first Schlögl model:

\(q_{x,y} = \begin{cases}
\beta_0 + \beta_1 x & \text{for } y = x + 1, x \geq 0 \\
\alpha_1 x + \alpha_2 (x - 1) & \text{for } y = x - 1, x \geq 1 \\
- \sum_{y \neq x} q_{x,y} & \text{for } y = x \\
0 & \text{otherwise}
\end{cases} \)

(2.6)

The second Schlögl model:

\(q_{x,y} = \begin{cases}
\beta_0 + \beta_2 x (x - 1) & \text{for } y = x + 1, x \geq 0 \\
\alpha_1 x + \alpha_2 (x - 1)(x - 2) & \text{for } y = x - 1, x \geq 1 \\
- \sum_{y \neq x} q_{x,y} & \text{for } y = x \\
0 & \text{otherwise}
\end{cases} \)

(2.7)

where all coefficients are positive constants.

\(\forall u \in M_1(E), u(\cdot) \in D([0,T], M_1(E)) \) let \(\langle \varphi, u \rangle = \int_E \varphi u(dx) < \infty, \sup_{0 \leq t \leq T} \langle \varphi, u(t) \rangle < \infty \) (all \(u \) and \(u(\cdot) \) below have these properties), then we have

Theorem 2.1 Under assumptions (2.1)-(2.5) we have

(a). The time-inhomogeneous martingale problem for \(Q_{u(t)} \) with initial distribution \(u \) is well-posed. The solution is denoted by \(P_{u(\cdot), u} \).

(b). The nonlinear martingale problem for \(Q \) with initial distribution \(u \) is well-posed.
(c). For each $N \geq 1$, the martingale problem for $\Omega^{(N)}$ on $D([0,T], E)^{\otimes N}$ with initial distribution $\omega^{\otimes N}$ is well-posed. This solution is denoted by $P_u^{(N)}$.

For $x, y \in E; u, \nu \in M_1(E)$, define

$$Q_u(x, y) = \begin{cases}
q_{x,x+1} + ||u|| & \text{for } y = x + 1 \\
q_{x,y} & \text{for } y \neq x, y \neq x + 1 \\
0 & \text{otherwise}
\end{cases}$$

(2.8)

$$q_{u}^*(x, y) = \frac{Q_u(x, y)}{Q_u(x, y)}.$$

(2.9)

For each $\omega \in D$ and $A \subset E$, define

$$N(t, A; \omega) = \#\{s: \omega(s) \in A, \omega(s) \neq \omega(s-), s \leq t\}$$

(2.10)

where $Q_u(s)(\omega(s), A) = \sum_{y \in A} Q_u(s)(\omega(s), y)$ and $u(\cdot) \in D([0,T], M_1(E))$.

Let $P_0^{(N)}$ be the unique solution to the martingale problem for $\Omega^{(N)}$ with initial distribution $\omega^{\otimes N}$, $P_u^{(N)}$ denote the N-fold independent product of $P_{u(\cdot)}$. ∀ $P \in \mathcal{M}$ let $\pi(P)(\cdot) = P \circ z_{t}^{-1}$. Then we have

Theorem 2.2 $P_{u(\cdot),u}^{(N)}$ and $P_u^{(N)}$ are mutually absolutely continuous and

$$\frac{dP_{u(\cdot),u}^{(N)}}{dP_u^{(N)}} = \exp(H_T^{(N)}(\omega)), \text{ where}$$

$$H_T^{(N)}(\omega) = \sum_{i=1}^{N} \int_{0}^{T} \left\{ \log q_{u(i)}(\omega_i(s-), y) \right\} N(ds, dy; \omega_i)$$

(2.11)

$$- \sum_{i=1}^{N} \int_{0}^{T} \left\{ \pi(\eta_{x(N)})(s) - ||u(s)|| \right\} ds.$$

(2.12)

3. The Main Result. Let X be a Hausdorff topological space. $\{P_N \subset M_1(X) \}$ is a sequence of positive numbers tending to ∞. I is a function from X to $[0,\infty)$.

Definition 3.1 (X, P_N, a_N) is said to be a large deviation system with action functional I if

i). for every open subset G of X

$$\liminf_{N \to \infty} a_N^{-1} \log P_N(G) \geq - \inf_{x \in G} I(x).$$

(3.1)
(3.2) \[\limsup_{N \to \infty} \frac{1}{N} \log P_N(F) \leq - \inf_{x \in F} I(x). \]

iii). the level sets \(\{x \in X : I(x) \leq s\} \) are compact for all \(s \geq 0 \).

Note: The infimum is replaced by \(+\infty\) if the set is empty.

Let \(I_u^{(\cdot)} : \mathcal{M}_\infty \to [0, \infty) \) be defined as

\[
I_u^{(\cdot)}(P) = \sup_{\Phi \in C_b(D)} \left\{ \int \Phi dP - \log E^{P^{(\cdot)}(\cdot)}(e^{\Phi}) \right\}
\]

where \(P \in \mathcal{M}_\infty \) and \(C_b(D) \) is the set of all bounded continuous functions on \(D \). Let \(I_u = I_u^{(P)}(P), P_u^{(N)} \) be the image of \(P_u^{(N)} \) under the map \(\eta_x^{(N)}(\cdot) \). We have the following main result

Theorem 3.3 Let \(u \in M_1(\mathcal{E}) \) satisfy \(\int_E e^{\psi(x)} \mu(dx) < \infty \), under conditions (2.1) -- (2.5) \((M_\infty, P_u^{(N)}, N)\) is a large deviation system with action functional \(I_u \).

The main idea of the proof is the following. First by Sanov's theorem we have

Lemma 3.4 \((M, P_u^{(N)}, N)\) is a large deviation system with action functional \(I_u^{(\cdot)}(\cdot) \).

This combined with theorem 2.2 yields the following estimates:

Lemma 3.5 For any \(r > 0 \), there exists an \(R_0 > 0 \) such that for all \(R \geq R_0 \) and \(N \geq 1 \), we have

\[
P_u^{(N)}(\mathcal{M}_\infty \backslash \mathcal{M}_R) \leq \exp(-N r).
\]

Lemma 3.6 For any \(R > 0, C > 0 \), there exists a compact set \(K_R \subset \mathcal{M}_\infty \) such that

\[
\limsup_{N \to \infty} \frac{1}{N} \log P_u^{(N)}(\mathcal{M}_R \backslash K_R) < -C.
\]

Lemma 3.7 For every \(\bar{P} \in \mathcal{M}_\infty \) and \(\gamma > 0 \), there exists an open neighborhood \(V \) of \(\bar{P} \) in \(M \) such that

\[
\limsup_{N \to \infty} \frac{1}{N} \log P_u^{(N)}(V) \leq -I_u(\bar{P}) + \gamma.
\]
Lemma 3.8 For every \(\bar{P} \in \mathcal{M}_\infty \) and any open neighborhood \(V \) of \(\bar{P} \), we have

\[
\liminf_{N \to \infty} \frac{1}{N} \log \mathcal{P}_u^{(N)}(V) \geq -I_u(\bar{P}).
\]

Lemma 3.9 Let \(u \in M_1(E) \) satisfy \(\int_E e^{u(x)}u(dx) < \infty \). Under assumptions (2.1)-(2.5), we have that for every \(r > 0, \Phi_u(r) = \{ P \in \mathcal{M}_\infty : I_u(P) \leq r \} \) is compact.

Theorem 3.3 is a direct result of these lemmas.

Acknowledgment. This research was financially supported by a scholarship from the Faculty of Graduate Studies and Research of Carleton University and the NSERC operating grant of D.A.Dawson. These results are part of my Ph.D. dissertation. I wish to thank my supervisor Professor D.A.Dawson for his guidance, patience and very helpful suggestions.

References

Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario K1S 5B6
CANADA.
Extinction of the Multilevel $M(M(R^d))$-Valued Branching Diffusion Process

Yadong Wu

Presented by Donald A Dawson, F.R.S.C.

Abstract

In this paper we consider a multilevel $M(M(R^d))$-valued branching diffusion process. The long time behavior of the process is studied. The main result is that if $d \leq 4$ then the two level $M(M(R^d))$-valued process suffers local extinction.

1 Introduction

In this paper, we study the multilevel branching diffusion process which was formulated by Dawson and Hochberg in 1991. We describe the continuous limiting process as a $M(M(R^d))$-valued process $Y(t)$. We investigate the long time behaviour of the process $Y(t)$ and obtain an analogue of the result in the one level case (see, Dawson (1977) [3]) that if the initial value is given by Lebesque measure on R^d then existence or non-existence of a non-trivial limiting distribution of the one level classical critical branching Brownian motion is equivalent to transience or recurrence of the spatial motion. The main result of this paper is to prove that:

The $M(M(R^d))$-valued process $Y(t)$ suffers local extinction if $d \leq 4$.

The method of proof for local extinction which we use here was suggested by Dawson.

2 Description of the Model

We define $\hat{R}^d = R^d \cup \{\tau\}$, τ being an isolated adjoined point. Let $M_\rho(\hat{R}^d)$ be the space of ρ-tempered measures introduced by Iscoe (1983) with the ρ-vague topology, that is, the smallest topology making the maps $\mu \rightarrow <\phi, \mu>$ continuous for $\phi \in C_c(\hat{R}^d) \cup \{\phi_\rho\}$, where $d < \rho \leq d+2$ and for $x \in R^d$

\begin{equation}
\phi_\rho(x) = \frac{1}{1 + |x|^\rho}, \quad \text{and} \quad \phi_\rho(\tau) = 1.
\end{equation}

Let

\[M^2_\rho(\mathbb{R}^d) \equiv \{ \nu \in M(M(\mathbb{R}^d)) : \int \int \phi(x) \mu(dx)\nu(d\mu) < \infty \} \]

and endow \(M^2_\rho(\mathbb{R}^d) \) with the smallest topology which make continuous the maps

\[\nu \mapsto \int \int \phi(x) \mu(dx)\nu(d\mu) \]

for all \(\phi \in C_c(\mathbb{R}^d) \cup \{ \phi \} \).

Remark 2.1 The measure \(\delta_{x_\epsilon} dx \in M(M(\mathbb{R}^d)) \) is very important for the next section. We know that \(\delta_{x_\epsilon} \) is an atomic measure on \(M(\mathbb{R}^d) \) with the mass at the atomic measure \(\delta_x \). So the measure \(\delta_{x_\epsilon} dx \) can be considered as \(\delta_{x_\epsilon} \) in which the location \(x \) of the atomic measure \(\delta_{x_\epsilon} \) is given by \(d \)-dimensional Lebesgue measure in \(\mathbb{R}^d \).

The basic process in this paper is a \(M^2_\rho(\mathbb{R}^d) \)-valued process \(Y(t) \). The reason that we consider \(M^2_\rho(\mathbb{R}^d) \) as the state space of the process is that we wish to allow measure \(\delta_{x_\epsilon} dx \) to be initial value of process \(Y(t) \) and it is easy to show that \(\delta_{x_\epsilon} dx \in M^2_\rho(\mathbb{R}^d) \).

We will not discuss in detail the construction of the process in this paper but explain briefly how it can be characterized as the continuous limit of a two level branching diffusion particle system.

We consider a two level branching random field. A "two level" system consists of two different level particles. Each level two particle (i.e., superparticle) is a collection of level one particles (i.e., particle) in \(\mathbb{R}^d \). We say that a superparticle is of size \(i \) if it consists of exactly \(i \) particles. We suppose that after an exponentially distributed time, each particle undergoes a level one binary branching process with the branching rate \(\gamma_1 \) in which case we note that the total number of superparticles is unchanged. We also assume that each superparticle performs level two binary branching with the branching rate \(\gamma_2 \), that is, either dies or produces a copy, each with probability one-half, after an exponentially distributed holding time with the parameter \(\gamma_2 \). During the holding times of both level one and level two, each particle moves in \(\mathbb{R}^d \) according to the \(d \)-dimensional Brownian motion. The entire system can be represented as a random atomic measure on \(N(\mathbb{R}^d) \):

\begin{equation}
Y_\epsilon(t) \equiv \sum_{i=1}^{\infty} \sum_{k=1}^{n_i} \delta_{x_i,k}(t) + n_0(t) \delta_{x_0}
\end{equation}

where \(x_{i,k}(t) \) denotes the location in \(\mathbb{R}^d \) of the \(r^\text{th} \) particle in the \(k^\text{th} \) superparticle \(X_{i,k}(t) \) of size \(i \) at time \(t \), \(n_i \) is the number of the superparticles of size \(i \) at time \(t \) and \(n_0(t) \) denotes the number of the null superparticles at time \(t \) where the term "null superparticle" means that it does not contain any particles.

Consider the test function \(F(\nu) \) on \(M^2_\rho \) of the following form:

\begin{equation}
F(\nu) = f(<h_1(<h_2,...>),\nu>)
\end{equation}
where $\nu \in M_\rho^2$, $h_1, f \in C_c^2(R)$ and $h_2 \in C_c^2(R^d)$ and $<< g(\mu), \nu > > = \int g(\mu)\nu(d\mu)$.

To study the continuous limit of the two level branching diffusion particle systems, we rescale the system as follows: If $B(M_\rho(R^d))$ denotes the Borel σ-algebra of $M_\rho(R^d)$, (ref. [8], p90), then for $A \in B(M_\rho(R^d))$ and $t > 0$, we define

$$Y_n(t, A) = \frac{1}{n} Y_0(nt, A_n) \quad \text{where} \quad A_n = \{ \mu : \frac{1}{n} \mu \in A \}$$

We can show that when $n \to \infty$, $Y_n(t)$ converges weakly in $D_{[0, \infty)}(M_\rho^2(R^d))$ to a M_ρ^2-valued process $Y(t)$ which can be characterized as the unique solution of the martingale problem for the limiting generator $G_\rho^{(2)}$ which is given by

$$G_\rho^{(2)} F(\nu) = << LF'(\nu, .), \nu >> + \gamma_2 << F''(\nu), \delta_{\mu_1}(d\mu_2)\nu(d\mu_1) >> .$$

In (2.4) L denotes the generator of the $M_\rho(R^d)$-valued branching process, i.e.

$$L F'(\nu, \mu) = L_1 F'(\nu, \mu) + L_2 F'(\nu, \mu)$$

$$= f'(<< h_1(< h_2, . >), \nu >>)h_1'(<< h_2, \mu >>) \Delta h_2, \mu >$$

$$+ \gamma_1 f'(<< h_1(< h_2, . >), \nu >>)h_1''(< h_2, \mu >>) < h_2, \mu >$$

where Δ is the d-dimensional Laplacian,

$$L_1 F'(\nu, \mu) = \int \Delta \frac{\delta F'(\nu, \mu)}{\delta \mu(x)} \mu(dx)$$

and

$$L_2 F'(\nu, \mu) = \gamma_1 \int \int \frac{\delta^2 F'(\nu, \mu)}{\delta \mu(x) \delta \mu(y)} \delta_s(dy) \mu(dx)$$

where

$$F'(\nu, \mu) = \frac{\partial F(\nu)}{\partial \nu(\mu)} = \frac{d}{d\epsilon} [F(\nu + \epsilon \delta_{\mu})]_{\epsilon = 0}$$

$$= f'(<< h_1(< h_2, . >), \nu >>)h_1(< h_2, \mu >)$$

The Laplace transition functional of the M_ρ^2-valued process $Y(t)$ is given by

$$L_{t, \nu}(H) = E[\exp(-\int_{M_\rho(R^d)} H(\mu)Y(t, d\mu)) \mid Y(0) = \nu]$$

$$= \exp\{-\int u(t, \mu)\nu(d\mu)\}$$

where $u(t, \mu)$ is a solution of the weak form of the following integral equations:

$$u(t, \mu) = T_t u(0, \mu) - \gamma_2 \int_0^t [T_{t-s} u^2(s, .)](\mu) ds$$

$$u(0, \mu) = H(\mu)$$

and $H(\mu) = f(\phi, \mu >), \phi \in C_c(R^d)$ and $f \in C_b(R)$. T_t denotes the semigroup of operators of the one level $M_\rho(R^d)$-valued branching process with the generator L.

Y. Wu 45
3 Extinction

Definition 3.1 We shall say that the two level $M^2_\rho(R^d)$-valued process $Y(t)$ suffers local extinction if for every compact set C in R^d, $\epsilon_1 > 0$ and $\epsilon_2 > 0$,

\[
\lim_{t \to -\infty} P(\ll \mathbf{1}_{K_{C_1,\epsilon_2}} Y(t) \gg > \epsilon_1) = 0
\]

where K_{C_1,ϵ_2} is given by

\[
K_{C_1,\epsilon_2} := \{\mu \in M_\rho(R^d) : \mu(C) > \epsilon_2\}
\]

and $\mathbf{1}_{K_{C_1,\epsilon_2}}$ is the indicator function of the set of K_{C_1,ϵ_2}.

Let $u(t, \mu)$ denote the solution of the equation (2.10) with initial values $u(0, \mu) = \left< \phi, \mu >, \nu_0 = \delta_{\delta_0}dx$ and define T^*_t by

\[
\int [1 - \exp\{-\left< \phi, . \right>\}] (\mu) T^*_t \nu_0 (d\mu) \equiv \int T_t [1 - \exp\{-\left< \phi, . \right>\}] (\mu) \nu_0 (d\mu)
\]

where T_t is the semigroup of operators of the one level $M_\rho(R^d)$-valued branching process with generator \mathcal{L}. Then we can show that for $d \geq 3$

\[
T^*_t \nu_0 \Rightarrow R_\infty
\]

where R_∞ is the canonical equilibrium measure for the one level measure branching process. Our main theorem requires the following lemma which was given by Dawson and Perkins (1991).

Lemma 3.1 Let \mathcal{R}_d denotes the Borel σ-algebra in R^d. Then for each $B \in \mathcal{R}_d$ and $d \geq 3$, we have

\[
R_\infty(\{\mu : \frac{1}{t}\mu(\sqrt{t}B) > a\})
\]

\[= t^{\frac{d+2}{2}} R_\infty(\{\mu : \mu(B) > a\})
\]

where R_∞ is the canonical equilibrium measure as above.

\[\square\]

Theorem 3.1 If $d \leq 4$ and $Y_0 = \nu_0 \equiv \delta_{\delta_0}dx$, then the two level process $Y(t)$ suffers local extinction.
Outline of the Proof: Since the one level $M_p(R^d)$-valued process with the generator \mathcal{L} suffers local extinction for $d \leq 2$, it is clear that the theorem is true in this case. So we only need to show the theorem for $d = 3$ and $d = 4$. In the remainder of this section, we always assume that $d \geq 3$. Noting that for each $\mu \in M(R^d)$, we have

\begin{equation}
\gamma_2 \int_0^t T_{t-s}[u(s)]^2(\mu)ds R_\infty(d\mu) \leq \int T_t u(0)(\mu) R_\infty(d\mu) < K < \infty
\end{equation}

for all t, therefore by the invariance of R_∞ we obtain

\begin{equation}
\lim_{t \to \infty} \int_0^t u^2(s, \mu) ds R_\infty(d\mu) < \infty.
\end{equation}

On the other hand, if

\begin{equation}
\lim_{t \to \infty} \int u(t, \mu) R_\infty(d\mu) = c_1 > 0
\end{equation}

then we obtain

\begin{equation}
\lim_{t \to \infty} \int_0^t u^2(s, \mu) ds R_\infty(d\mu) = \infty.
\end{equation}

Thus we obtain

\begin{equation}
\lim_{t \to \infty} \int u(t, \mu) R_\infty(d\mu) = 0
\end{equation}

by contradiction. Therefore, together with the fact that for each $t > 0$

\begin{equation}
\limsup_{t_1 \to \infty} \int u(t_1, \mu) \nu_0(d\mu) = \limsup_{t_1 \to \infty} \int u(t_1 + t, \mu) \nu_0(d\mu)
\end{equation}

\begin{equation}
\leq \int T_t u(0, \mu) R_\infty(d\mu) - \gamma_2 \int_0^t T_{t-s}[u(s)]^2(\mu) ds R_\infty(d\mu)
\end{equation}

\begin{equation}
= \int u(t, \mu) R_\infty(d\mu)
\end{equation}

we have

\begin{equation}
\limsup_{t_1 \to \infty} \int u(t_1, \mu) \nu_0(d\mu) = 0.
\end{equation}

as claimed.

\[\Box\]

Acknowledgement. This paper is a part of the author's doctoral thesis which was written under the supervision of Professor D.Dawson. The author would like to thank Professor Dawson for his continued advice and guidance in this project.

References

Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario K1S 5B6
Canada

Received February 27, 1992
CONSTRUCTION D'UN EXEMPLE D'ANNEAU DE JAFFARD
LOCAL FACTORIEL NON NOETHERIEN DE DIMENSION 2
ET DE CARACTERISTIQUE 0.

SOUAD AMEZIANE HASSANI

Presented by P. Ribenboim, F.R.S.C.

5 INTRODUCTION.

Dans [2, Proposition 2.12 (b)] A. Bouvier et S. Kabbaj ont énoncé que pour tout \(n \geq 2 \), il existe un anneau de Jaffard, factoriel, local, non noethérien, de dimension \(n \) et de caractéristique 0. Pour ce faire, ils ont utilisé une construction de J.W. Brewer, D.L. Costa et E. Lady [3, Theorem D], où l'anneau en question était de dimension \(n \geq 3 \), en omettant ainsi le cas où \(n = 2 \). La question restait donc ouverte pour \(n = 2 \).

Dans ce papier, en s'inspirant d'un exemple dans [3, p. 306-307], nous allons construire un anneau de Jaffard, factoriel, local, non noethérien, de dimension 2 et de caractéristique 0.

Soient \(A \) un anneau et \(G \) un groupe abélien noté additivement. L'anneau de

En fait, A[G] est isomorphe au A-module libre \(\bigoplus_{g \in G} A x^g \), où \(x^g x^{g'} = x^{gg'} \) pour tout \(g, g' \in G \).

Notons que A[G] est intègre si et seulement si A est intègre et G est sans torsion [6, Theorem 15.8].

S 2 EXEMPLE.

Ce paragraphe est consacré à l'exemple d'anneau de Jaffard, local, factoriel, non noethérien, de dimension 2 et de caractéristique 0.

On reprend entièrement la construction faite dans [3, p. 306-307].

Soient \(p \) un entier naturel premier, \(\mathbb{Z}[1/p] = \{ a/p^n ; a \in \mathbb{Z}, n \in \mathbb{N} \} \),

\(G = \mathbb{Z}[1/p] \oplus \mathbb{Z}[1/p] \oplus \mathbb{Z}[1/p] \), \(H = \mathbb{Z}[1/p] \oplus \mathbb{Z}[1/p] \) un sous-groupe de G et

\(G_n = H \oplus p^n \mathbb{Z} \).

Il est clair que G = \(\bigcup_{n \geq 0} G_n \) et que \(\mathbb{Z}[G] = \bigcup_{n \geq 0} \mathbb{Z}[G_n] = \bigcup_{n \geq 0} \mathbb{Z}[H][p^{-n}] \mathbb{Z} \)

(\(\mathbb{Z}[G_n] = \mathbb{Z}[H][p^{-n}] \mathbb{Z} \), d'après [8, Theorem 7.1]).

Soit \(\delta_1, \delta_2, \ldots \) une suite d'éléments de \(\mathbb{Z}[H] - \{0\} \) telle que cl(\(\delta_n \)) n'est pas nulle dans \(\mathbb{Z}/p \mathbb{Z}[H] \) où cl(\(\delta_n \)) désigne la classe de \(\delta_n \) modulo \(p \mathbb{Z}[H] \) et

\(\text{cl}(\delta_n)^p = \text{cl}(\delta_{n-1}) \) pour tout \(n \in \mathbb{N} \).

(la suite de terme général \(\delta_n = \chi(p^{-n}, 0) + \chi(0, p^{-n}) \) convient).

\(P_n = (p, \delta_n + yp^{-n}) \) est un idéal premier de \(\mathbb{Z}[H][yp^{-n}, y-p^{-n}] \) qui est identifié à \(\mathbb{Z}[H][p^{-n}] \mathbb{Z} \), et \(p = \bigcup_{n \geq 0} P_n \) est un idéal premier de \(\mathbb{Z}[G] \).

Soit \(A = \mathbb{Z}[G]_p \); il est établi dans [3, p. 306-307] que :

A est factoriel.
. A est non noethérien.
. A est local, de dimension 2 et de caractéristique 0.

Nous affirmons alors que :
. A est un anneau de Jaffard.

Comme dim \(\mathbb{Z}[G]_p = 2 \), on va prouver que dim \(\mathbb{Z}[G]_{p[X_1, X_2]} = 2 + 2 = 4 \).

Il suffit d'établir que dim \(\mathbb{Z}[G]_{p[X_1, X_2]} \leq 4 \).

\(\mathbb{Z}[G]_{p[X_1, X_2]} = S^{-1}(\mathbb{Z}[G]_{[X_1, X_2]}) \), où S = \(\mathbb{Z}[G] - P \). Donc

spec(\(\mathbb{Z}[G]_p \)) est homéomorphe à \((Q \in \text{spec}(\mathbb{Z}[G]_{[X_1, X_2]}) / Q \cap S = \emptyset) \).

Soit Q \in spec(\(\mathbb{Z}[G]_{p[X_1, X_2]} \)) tel que Q \cap S = \emptyset. Posons q = Q \cap \mathbb{Z}[G]_p et alors Q \cap S = \emptyset entraîne que q \subseteq P.

On sait que ht Q \leq 2 + ht q[X_1, X_2] ([4, Theorem 1]),

\[\leq 2 + \text{ht} \, P[X_1, X_2]. \]

Il suffit donc de prouver que \(\text{ht} \, P[X_1, X_2] \leq 2 \). On a : P = \(\cup_{n \in \mathbb{N}} P_n \) et par suite,

\(P[X_1, X_2] = \cup_{n \in \mathbb{N}} P_n[X_1, X_2]. \)

Soit l'idéal premier \(Q_0 = (p, \delta_0 + Y) \) dans \(\mathbb{Z}[H][Y]. \)

ht \(P_0[X_1, X_2] = \text{ht} \, Q_0[X_1, X_2] \) car \(P_0[X_1, X_2] = T^{-1}Q_0[X_1, X_2] \) où \(T = (Y^n / n \in \mathbb{N}). \)

Nous allons établir que ht \(Q_0[X_1, X_2] = 2 \). Sinon, supposons que

ht \(Q_0[X_1, X_2] > 2 \) (ht \(Q_0 = 2 \)).

Dans \(\mathbb{Z}[H][Y, X_1, X_2], Q_0[X_1, X_2] \cap \mathbb{Z}[H] = p\mathbb{Z}[H] \) et

\[\text{ht} \, p\mathbb{Z}[H][Y, X_1, X_2] + \dim \frac{\mathbb{Z}}{p\mathbb{Z}} \, [H][Y, X_1, X_2] \leq \dim \mathbb{Z}[H][Y, X_1, X_2]. \]

\(\mathbb{Z}/p\mathbb{Z} \, [H][Y, X_1, X_2] \) est isomorphe à \(\mathbb{Z}/p\mathbb{Z} \, [Y, X_1, X_2][H] \) et \(\mathbb{Z}[H][Y, X_1, X_2] \)
est isomorphe à \(\mathbb{Z}[Y, X_1, X_2][H] \) (il s'agit des isomorphismes canoniques).

Comme rang H = 2, alors dim \(\mathbb{Z}/p\mathbb{Z} \, [Y, X_1, X_2][H] = 5 \) et

\[\dim \mathbb{Z}[Y, X_1, X_2][H] = 6 \] [7, Corollary 2].
Par suite, \(\text{ht} p\mathbb{Z}[H][Y, X_1, X_2] + 5 \leq 6 \). Il en résulte que \(\text{ht} p\mathbb{Z}[H][Y, X_1, X_2] \leq 1 \).

\(\mathbb{Z}[H][Y, X_1, X_2] \) est intègre et \(p\mathbb{Z}[H][Y, X_1, X_2] = 0 \) donc \(\text{ht} p\mathbb{Z}[H][Y, X_1, X_2] = 1 \).

D'après [4, Corollary 3] la hauteur de \(Q_0[X_1, X_2] \) peut être réalisée comme la longueur d'une chaîne spéciale, et comme \(\text{ht} p\mathbb{Z}[H][Y, X_1, X_2] = 1 \), il existe alors \(Q' \in \text{spec} \mathbb{Z}[H][Y, X_1, X_2] \) tel que : \(p\mathbb{Z}[H][Y, X_1, X_2] \subset Q' \subset Q_0[X_1, X_2] \).

Absurde, puisque \(Q_0[X_1, X_2] \) est un supérieur de \(p\mathbb{Z}[H][X_1, X_2] \) dans \(\mathbb{Z}[H][X_1, X_2][Y] \) (qu'on identifie avec \(\mathbb{Z}[H][Y, X_1, X_2] \)). Donc, \(\text{ht} P_0[X_1, X_2] = 2 \).

Pour tout \(n \in \mathbb{N} \), la construction de \(P_n \) dans \(\mathbb{Z}[H][\gamma^p-n, \gamma^{-p-n}] \) est similaire à celle de \(P_0 \) dans \(\mathbb{Z}[H][Y, \gamma^{-1}] \). Par conséquent pour tout \(n \in \mathbb{N} \), \(\text{ht} P_n[X_1, X_2] = 2 \).

On a \(\text{ht} P = 2 \) [3, p. 306-307], donc \(\text{ht} P[X_1, X_2] \geq 2 \).

Supposons que \(\text{ht} P[X_1, X_2] > 2 \), il existe alors \(Q_1, Q_2, Q_3 \in \text{spec}(\mathbb{Z}[G][X_1, X_2]) \) tels que : \((0) \subset Q_1 \subset Q_2 \subset Q_3 = P[X_1, X_2] \) (x).

Soient \(x_1, x_2, x_3 \in P[X_1, X_2] \) tels que \(x_1 \in Q_1-(0), x_2 \in Q_2-Q_1 \) et \(x_3 \in Q_3-Q_2 \).

\(\mathbb{Z}[G] = \bigcup_{n \geq 0} L_n \), où \(L_n = \mathbb{Z}[H][\gamma^p-n, \gamma^{-p-n}] \). Donc, \(\mathbb{Z}[G][X_1, X_2] = \bigcup_{n \geq 0} L_n[X_1, X_2] \), il existe alors \(n_0 \in \mathbb{N} \) tel que : \(x_1, x_2, x_3 \in L_{n_0}[X_1, X_2] \).

\(P[X_1, X_2] \cap L_{n_0}[X_1, X_2] = (P \cap L_{n_0})[X_1, X_2] \). Or, \(P \cap L_{n_0} = P_{n_0} \):

En effet, \(P_{n_0} \subset P \cap L_{n_0} \). Inversement, soit \(z \in P \cap L_{n_0} \), comme \(P = \bigcup_{n \geq 0} P_n \), il existe \(m > n_0 \) tel que \(z \in P_m \); et donc \(cl(z) \in P_m/p\mathbb{Z}[H][\gamma^p-m, \gamma^{-p-m}] \), par suite, \(cl(z) = cl(f)(cl(\delta_m) + \gamma^p-m) \), où \(f \in L_m = \mathbb{Z}[H][\gamma^p-m, \gamma^{-p-m}] \).

\(cl(z)^p = cl(f)^p(cl(\delta_{m-1}) + \gamma^p-(m-1)) \), \(cl(f)^p \in \mathbb{Z}/p\mathbb{Z} \mathbb{Z}[H][\gamma^p-(m-1), \gamma^{-p-(m-1)}] \).

Donc, \(cl(z)^p \in P_{m-1}/p\mathbb{Z}[H][\gamma^p-(m-1), \gamma^{-p-(m-1)}] \). En répétant le même
processus \((m-n_0)\) fois, on obtient :

\[\text{Cl}(Z)^{m-n_0} = \text{Cl}(f)^{m-n_0} \tau \text{Cl}(\delta_{n_0}) \tau \gamma^{p-n_0} \in P_{n_0} / p \mathbb{Z}[H][\gamma^{p-n_0}, \gamma^{-p-n_0}]. \]

Et comme \(Z^{p-m-n_0} \in L_{n_0} \quad (z \in L_{n_0})\), alors \(z \in P_{n_0} \). D'où, \(P \cap L_{n_0} = P_{n_0}\).

Par suite, \(P[X_1, X_2] \cap L_{n_0}[X_1, X_2] = P_{n_0}[X_1, X_2]\).

Il en résulte alors par contraction de la suite \((*)\) sur \(L_{n_0}[X_1, X_2]\) que

\(\text{ht } P_{n_0}[X_1, X_2] \geq 3\) (absurde).

D'où \(A = \mathbb{Z}[G]_p\) est l'exemple désiré.

Remarquons que pour pouvoir appliquer [5, Lemma 2.1], on doit vérifier que \(\mathbb{Z}[G][X_1, X_2]_p[X_1, X_2] = \cup_{n \geq 0} \mathbb{Z}[G][X_1, X_2]_{P_n}[X_1, X_2]\) pour être dans les conditions du lemme. Une telle vérification est loin d'être immédiate.

REFERENCES

On Jaffard domains.

Examples of Jaffard domains.

Prime ideals and localization in commutative group rings.
Journal of algebra 34 (2) (1975) 300-308.

Krull dimension of polynomial rings.
Springer Lecture Notes Math. 311 (1972) 26-45.

Direct limits of Jaffard domains and S-domains.

[6] **R. GILMER.**

Multiplicative ideal theory.

[7] **R. GILMER.**

A two-dimensional non-noetherian factorial ring.

[8] **R. GILMER.**

Commutative semigroup rings.

Département de Mathématiques et Informatique.
Faculté des Sciences, Université S.M. Ben Abdellah
B.P. 1796 (Atlas), Fès - Maroc.

Received March 6, 1992
The Diophantine equation $x^4 + dy^4 = z^p$

Nobuhiro Terai and Hiroyuki Osada

Presented by P. Ribenboim, F.R.S.C.

1 Introduction

Let p be an odd prime, and let d be a square-free positive integer. In [2], Powell proved that the Diophantine equation

$$x^4 \pm y^4 = z^p$$

has no integral solutions x, y, z, where $(x, y) = 1$, $p \nmid xyz$ and $p \not\equiv \pm 1 \pmod{8}$ for the case $x^4 + y^4 = z^p$. In the present paper we shall prove that the Diophantine equation

$$x^4 + dy^4 = z^p$$

has no integral solutions x, y, z under some conditions, using the method of factoring z^p as $(x^2 + \sqrt{-d}y^2)(x^2 - \sqrt{-d}y^2)$ over the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$ as in [2].

This type of equation is treated in the book of Shorey and Tijdeman [3], especially chapter 8, 10. The Diophantine equation

$$x^4 + dy^4 = z^p$$

has been considered by Fermat, Euler, Nagell and others for a long time, using the method of infinite descent (see Mordell’s book [1], chapter 4).

2 Lemma

In this section, we prove the following lemma which we use in the next section.

Lemma. Let x, y be relatively prime integers such that x is odd, y is even, $(x, d) = 1$ and $p \nmid xyz$. Suppose that for some integers a, b

$$x^2 + \sqrt{-dy^2} = (a + b\sqrt{-d})^p. \quad (1)$$

If $p \not\equiv \pm 1 \pmod{8}$, then the equation (1) has no integral solutions x, y.

Proof. It follows from (1) that

$$x^2 = a \sum_{j=0}^{(p-1)/2} \left(\begin{array}{c} p \\ 2j \end{array} \right) a^{p-2j+1} b^{2j} (-d)^j = aA, \quad (2)$$

$$y^2 = b \sum_{j=0}^{(p-1)/2} \left(\begin{array}{c} p \\ 2j+1 \end{array} \right) a^{p-2j+1} b^{2j} (-d)^j = bB. \quad (3)$$
We first show that \((a, A) = 1\) and \((b, B) = 1\). Since \((x, y) = 1\) and \(x\) is odd, \((a, b) = 1\) and \(a\) is odd. We also have \((a, d) = 1\) and \(p \not| ab\) from \((x, d) = 1\) and \(p \not| xy\). Hence, since

\[
A \equiv pb^{p-1}(-d)^{p-1/2} \pmod{a^2}
\]

and

\[
B \equiv pa^{p-1} \pmod{b^2},
\]

\((a, A) = 1\) and \((b, B) = 1\). Therefore from \((2),(3)\) we obtain

\[
a = \pm u^2, \quad A = \pm U^2, \quad b = \pm v^2 \quad \text{and} \quad B = \pm V^2
\]

for some non-zero integers \(u, U, v\) and \(V\).

We next show that \(b\) is even and \(B\) is odd. Let \(d\) be even. Then it is easily seen that \(B\) is odd, so \(b\) is even since \(y\) is even. Let \(d\) be odd and suppose that \(b\) is odd. Then we have

\[
\sum_{j=0}^{(p-1)/2} \binom{p}{2j} \equiv A \equiv 1 \pmod{2}
\]

and

\[
\sum_{j=0}^{(p-1)/2} \binom{p}{2j+1} \equiv B \pmod{2},
\]

so

\[
2^p = \sum_{k=0}^{p} \binom{p}{k} = \sum_{j=0}^{(p-1)/2} \binom{p}{2j} + \sum_{j=0}^{(p-1)/2} \binom{p}{2j+1} \equiv 1 + B \pmod{2}.
\]

Thus \(B\) is odd. But this contradicts that \(y^2 = bB\) is even. Hence \(b\) is even, so \(B\) is odd since \((b, B) = 1\). Therefore it follows from \((4),(5)\) that

\[
\pm V^2 \equiv pa^{p-1} \pmod{8},
\]

so \(\pm 1 \equiv p \pmod{8}\) since \(V\) and \(a\) are odd. This contradicts our assumption \(p \not\equiv \pm 1 \pmod{8}\), which completes the proof of Lemma.

\[\square\]

3 Theorems

We use Lemma in section 2 to prove the following theorems:

Theorem 1 Let \(p\) be an odd prime, let \(d \not\equiv 3 \pmod{4}\) be a square-free positive integer, and let \(h(-d)\) be the class number of the imaginary quadratic field \(Q(\sqrt{-d})\). If \(p \not\equiv \pm 1 \pmod{8}\) and \(p \not| h(-d)\), then the Diophantine equation

\[
x^4 + dy^4 = z^p
\]

has no integral solutions \(x, y, z\) with \((x, y) = 1\), \(p \not| xy\) and \(y\) even.

Theorem 2 Let \(p\) be an odd prime and let \(m \equiv 1 \pmod{4}\) be a square-free positive integer. If \(p \equiv 3 \pmod{8}\) or \(p \equiv 5 \pmod{16}\) and \(p \not| h(-2m)\), then the Diophantine equation

\[
x^4 + 2my^4 = z^p
\]

has no integral solutions \(x, y, z\) with \((x, y) = 1\), \(p \not| xy\).
Proof of Theorem 1. Since \((x, y) = 1\) and \(y\) is even, we see that \(x\) and \(z\) are odd, \((x, z) = 1\) and \((z, d) = 1\). Now we show that \(x^2 + \sqrt{-d}y^2\) and \(x^2 - \sqrt{-d}y^2\) are relatively prime in \(\mathbb{Z}[\sqrt{-d}]\), the ring of integers in \(\mathbb{Q}(\sqrt{-d})\). Suppose that there is a prime ideal \(p\) in \(\mathbb{Z}[\sqrt{-d}]\) which divides both \(x^2 + \sqrt{-d}y^2\) and \(x^2 - \sqrt{-d}y^2\). Then \(p \nmid 2\) since \(x^4 + dy^4\) is odd. Hence \(p \nmid x\) and \(p \nmid y\sqrt{-d}\). If \(p \nmid \sqrt{-d}\), then \(p\) divides both \(x\) and \(y\), which is impossible since \((x, y) = 1\). Therefore \(p \mid \sqrt{-d}\), so \(p \mid d\), which contradicts that \((x, d) = 1\) since \(p \mid x\). Thus \(x^2 + \sqrt{-d}y^2\) and \(x^2 - \sqrt{-d}y^2\) are relatively prime in \(\mathbb{Z}[\sqrt{-d}]\). Hence it follows from (6) that there is an ideal \(A\) in \(\mathbb{Z}[\sqrt{-d}]\) such that

\[
(x^2 + y^2\sqrt{-d}) = A^p.
\]

Since \(p \nmid h(-d)\) and \(d \equiv 3 \pmod{4}\), we obtain

\[
x^2 + y^2\sqrt{-d} = (a + b\sqrt{-d})^p
\]

for some integers \(a, b\). Therefore (8) has no integral solutions \(x, y\) by Lemma. This completes the proof of Theorem 1.

\[\square\]

Proof of Theorem 2. Suppose that our assumptions are all satisfied. Then by Theorem 1, we have only to prove that \(y\) is even in (7). On the contrary, suppose that \(y\) is odd. We use the notations in the proof of Lemma. Since \((x, y) = 1\), we see that \(x\) and \(z\) are odd, \((z, x) = 1\) and \((z, 2m) = 1\). Therefore we obtain

\[
x^2 + y^2\sqrt{-2m} = (a + b\sqrt{-2m})^p,
\]

as in the proof of Theorem 1. Hence by the proof of Lemma, we have

\[
A = \sum_{j=o}^{(p-1)/2} \left(\begin{array}{c} p \\ 2j \end{array}\right) a^p \cdot 2^{j+1} b^2 \cdot (-2m)^2 \cdot x^2 = aA,
\]

\[
B = \sum_{j=o}^{(p-1)/2} \left(\begin{array}{c} p \\ 2j + 1 \end{array}\right) a^p \cdot 2^{j+1} b^2 \cdot (-2m)^2 \cdot y^2 = bB,
\]

\[
A = \pm U^2, \quad B = \pm V^2.
\]

Since \(x\) and \(y\) are odd, we see that \(a, A, b\) and \(B\) are all odd.

Suppose \(p \equiv 3 \pmod{8}\). Then it follows from (10),(12) that

\[
A = \pm U^2 \equiv a^{p-1} + \left(\begin{array}{c} p \\ 2 \end{array}\right) a^{p-3} b^2 (-2m) \pmod{8},
\]

so \(\pm 1 \equiv 1 - 6m \pmod{8}\). Thus \(m \equiv 0, 3 \pmod{4}\), which is a contradiction since \(m \equiv 1 \pmod{4}\). Hence \(y\) is even.

Suppose \(p \equiv 5 \pmod{16}\). Then by (11) and (12), we have

\[
B = \pm V^2 \equiv \left(\begin{array}{c} p \\ 1 \end{array}\right) a^{p-1} + \left(\begin{array}{c} p \\ 3 \end{array}\right) a^{p-3} b^2 (-2m) + \left(\begin{array}{c} p \\ 5 \end{array}\right) a^{p-5} b^4 (-2m)^2 \pmod{8},
\]
so $\pm 1 \equiv 5 - 20m + 4m^2 \pmod{8}$. Thus $4m \equiv 0, -2 \pmod{8}$, which contradicts that m is odd. Therefore y is even. This completes the proof of Theorem 2. □

Remark 1 If $d = 1$ in (6), it follows unconditionally that $p \nmid h(-1)$ and y is even. Therefore Theorem 1 gives a generalization of Powell’s result for the case $x^4 + y^4 = z^p$.

Remark 2 If some conditions of Theorem 1 are not satisfied, then the equation (6) sometimes has integral solutions. Such examples are given in the table below. We note that if $(x, y) > 1$, then there are many d’s such that the equation (6) has integral solutions. The condition $(x, y) = 1$ is essential one for the equation (6) to has no integral solutions (see [2], p222).

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>p</th>
<th>d</th>
<th>$h(-d)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4</td>
<td>33</td>
<td>3</td>
<td>131</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>17</td>
<td>3</td>
<td>157</td>
<td>6</td>
</tr>
<tr>
<td>55</td>
<td>20</td>
<td>225</td>
<td>3</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>1829</td>
<td>40</td>
</tr>
<tr>
<td>96</td>
<td>96</td>
<td>24</td>
<td>7</td>
<td>53</td>
<td>6</td>
</tr>
</tbody>
</table>

Table. integral solutions of (6) which do not satisfy some conditions of Theorem 1

Acknowledgement. The authors would like to thank the referee for his valuable suggestions.

References

Nobuhiro Terai
Department of Mathematics
School of Science and Engineering
Waseda University
Okubo, Shinjuku, Tokyo 169, Japan

Hiroyuki Osada
Department of Mathematics
Rikkyo University
Nishi-Ikebukuro, Tokyo 171, Japan

Received February 27, 1992
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
</table>
| 1. | V. Drensky | Institute of Mathematics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Block 8
1113 Sofia, Bulgaria |
| 2. | S. Feng | Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario, Canada, K1A 5B6 |
| 3. | S.A. Hassani | Département de Mathématiques et Informatique
Faculté des Sciences
Université S.M. Ben Abdellah
B.P. 1796 (Atlas), Fès-Maroc |
| 4. | P.R. Heath | Department of Mathematics
Memorial University of Newfoundland
St. John's, Newfoundland, Canada, A1C 5S7 |
| 5. | T.-Y. Lee | Department of Mathematics
University of Maryland
College Park, MD 20742, U.S.A. |
| 6. | K.-Q. Liu | Department of Mathematics
University of Alberta
Edmonton, Alberta, Canada, T6G 2G1 |
| 7. | S.D. Morgera | Department of Electrical Engineering
McGill University
Montréal, Québec, Canada, H3A 2A7 |
| 8. | H. Osada | Department of Mathematics
Rikkyo University
Nishi-Ikebukuro, Tokyo 171, Japan |
| 9. | B. Remillard | Département de Mathématiques
Université du Québec - Trois-Rivières
Trois-Rivières, Québec, Canada, G1K 7P4 |
| 10. | B. Szyszkowicz | Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario, Canada, K1S 5B6 |
| 11. | N. Terai | Department of Mathematics
School of Science and Engineering
Waseda University
Okubo, Shinjuku, Tokyo 169, Japan |
| 12. | Y. Wu | Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario, Canada, K1S 5B6 |