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JET SCHEMES, ARC SPACES AND THE NASH PROBLEM

SHIHOKO ISHII

Presented by Pierre Milman, FRSC

Abstract. This paper is an introduction to the jet schemes and the
arc space of an algebraic variety. We also introduce the Nash problem on

arc families.

Résumé. Ce papier constitue une introduction aux espaces de jets et
à l’espace d’arcs d’une variété algébrique. Nous introduisons également le

problème de Nash pour les familles d’arcs.

1. Introduction. The concepts of jet scheme and arc space over an alge-
braic variety or an analytic space were introduced by John Nash in a preprint in
1968, but only published in 1995 [36].

The study of these spaces was further developed by Kontsevich and by Denef
and Loeser as the theory of motivic integration, see [28, 7, 8, 9, 10, 11]. These
spaces are considered as a way to represent the nature of the singularities of the
base space. In fact, papers [12, 13, 34, 35] by Mustaţǎ, Ein, and Yasuda show
that geometric properties of the jet schemes determine certain properties of the
singularities of the base space.

In this paper, we provide an introduction to the basic knowledge of these
spaces and the Nash problem. A powerful tool for working on these spaces is
the theory of motivic integration. We will not discuss this theory, as there are
already very good introductory papers on motivic integration by A. Craw [5],
W. Veys [48] and F. Loeser [32]. We delve into the basic study of the geometric
structure of arc spaces and jet schemes. We also give an introduction to the
Nash problem, which was posed in [36].

Throughout this paper the base field k is an algebraically closed field of arbi-
trary characteristic and a variety is an irreducible reduced scheme of finite type
over k. A scheme of finite type over k is always separated over k.

We omit the proofs of statements whose references are thought to be easily
accessible. We assume the reader has knowledge of Hartshorne’s textbook [19].
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2. Construction of jet schemes and arc spaces.

Definition 2.1. Let X be a scheme of finite type over k and K ⊃ k a field
extension. For m ∈ N, a k-morphism SpecK[t]/(tm+1) −→ X is called an m-jet
of X and a k-morphism SpecK[[t]] −→ X is called an arc of X. We denote the
unique point of SpecK[t]/(tm+1) by 0, the closed point of SpecK[[t]] by 0, and
the generic point by η.

Theorem 2.2. Let X be a scheme of finite type over k. Let Sch be the
category of k-schemes and Set the category of sets. Define a contravariant functor
FX
m : Sch/k −→ Set by

FX
m (Z) = Homk(Z ×Spec k Spec k[t]/(tm+1), X).

Then FX
m is representable by a scheme Xm of finite type over k, that is

Homk(Z,Xm) ≃ Homk

(
Z ×Spec k Spec k[t]/(tm+1), X

)
.

This Xm is called the space of m-jets of X or the m-jet scheme of X.

This proposition was proved in [4, p. 276]. In this paper, we prove it by a
concrete construction for affine schemes X first and then patch those together
for a general X. For our proof, we need some preparatory discussions.

Let X be a k-scheme. Assume that FX
m is representable by Xm for every

m ∈ N. Then, for m < m′, the canonical surjection k[t]/(tm
′+1) −→ k[t]/(tm+1)

induces a morphism ψm′,m : Xm′ −→ Xm. Indeed, the canonical surjection

k[t]/(tm
′+1) −→ k[t]/(tm+1) induces a morphism

Z ×Spec k Spec k[t]/(tm
′+1)← Z ×Spec k Spec k[t]/(tm+1),

for an arbitrary k-scheme Z. Therefore we have a map

Homk

(
Z ×Spec k Spec k[t]/(tm

′+1), X
)
−→ Homk

(
Z ×Spec k Spec k[t]/(tm+1), X

)

which gives the map Homk(Z,Xm′) −→ Homk(Z,Xm). Take, in particular,
Xm′ as Z, Homk(Xm′ , Xm′) −→ Homk(Xm′ , Xm). Then the image of idXm′

∈
Hom(Xm′ , Xm′) by this map gives the required morphism.

This morphism ψm′,m is called a truncation map. In particular for m = 0,
ψm′,0 : Xm′ −→ X is denoted by πm. When we need to specify the scheme X,
we denote it by πXm.

Actually ψm′,m “truncates” a power series in the following sense: A point α

of Xm′ gives an m′-jet α : SpecK[t]/(tm
′+1) −→ X, which corresponds to a ring

homomorphism α∗ : A −→ K[t]/(tm
′+1), where A is the affine coordinate ring of

an affine neighborhood of the image of α. For every f ∈ A, let

α∗(f) = a0 + a1t+ a2t
2 + · · ·+ amt

m + · · ·+ am′tm
′

.
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Then (
ψm′,m(α)

)∗
(f) = a0 + a1t+ a2t

2 + · · ·+ amt
m.

This fact can be seen by letting Z = {α} in the above discussion.

As we did in the above argument, we denote the point of Xm corresponding
to α : SpecK[t]/(tm+1) −→ X by the same symbol α. Then, we should note
that πm(α) = α(0).

Proposition 2.3. Let f : X −→ Y be a morphism of k-schemes of finite
type. Assume that the functors FX

m and FY
m are representable by Xm and Ym,

respectively. Then a canonical morphism fm : Xm −→ Ym is induced for every
m ∈ N such that the following diagram is commutative:

Xm

fm
//

πXm

��

Ym

πY m

��

X
f

// Y.

Proof. Let Xm×Spec k[t]/(t
m+1) −→ X be the “universal family” ofm-jets

of X, i.e., it corresponds to the identity map in Homk(Xm, Xm). By composing
this map with f : X −→ Y , we obtain a morphism

Xm × Spec k[t]/(tm+1) −→ Y,

which gives a morphism Xm −→ Ym. Pointwise, this morphism maps an m-jet
α ∈ Xm of X to the composite f ◦ α which is an m-jet of Y . To see this, just
take a point α ∈ Xm and examine the image of {α} × Spec k[t]/(tm+1) −→ Y .
The commutativity of the diagram follows from this description.

Proposition 2.4. For k-schemes X and Y , assume that the functors FX
m

and FY
m are representable by Xm and Ym, respectively. If f : X −→ Y is an étale

morphism, then Xm ≃ Ym ×Y X, for every m ∈ N.

Proof. By the above proposition we have a commutative diagram:

Xm

fm
//

��

Ym

��

X
f

// Y.
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It is sufficient to prove that for every commutative diagram

Z //

��

Ym

��

X
f

// Y,

there is a unique morphism Z −→ Xm which is compatible with the projections
to X and Ym. Now we are given the following commutative diagram:

Z

��

// Z ×Spec k Spec k[t]/(tm+1)

��

X // Y.

As f is étale, there is a unique morphism Z×Spec k Spec k[t]/(t
m+1) −→ X which

makes the two triangles commutative. This gives the required morphism.

As a corollary of this proposition, we obtain the following lemma.

Lemma 2.5. Let U ⊂ X be an open subset of a k-scheme X. Assume
the functors FX

m and FU
m are representable by Xm and Um, respectively. Then,

Um = π−1
Xm(U).

Proof of Theorem 2.2. Since a k-scheme X is separated, the intersection
of two affine open subsets is again affine. Therefore, by Lemma 2.5, it is sufficient
to prove the representability of FX

m for affine X. Let X be SpecR, where R =
k[x1, . . . , xn]/(f1, . . . , fr). It is sufficient to prove the representability for an
affine variety Z = SpecA. Then we obtain that

Hom
(
Z × Spec k[t]/(tm+1), X

)
≃ Hom

(
R,A[t]/(tm+1)

)

≃
{
ϕ ∈ Hom

(
k[x1, . . . , xn], A[t]/(t

m+1)
) ∣∣ ϕ(fi) = 0 for i = 1, . . . , r

}
.

=:W.

(∗)

If we write ϕ(xj) = a
(0)
j +a

(1)
j t+a

(2)
j t2+ · · ·+a

(m)
j tm for a

(l)
j ∈ A, it follows that

ϕ(fi) = F
(0)
i (a

(l)
j ) + F

(1)
i (a

(l)
j )t+ · · ·+ F

(m)
i (a

(l)
j )tm

for polynomials F
(s)
i in a

(l)
j ’s. Then the above set (∗) is represented as follows:

W = {ϕ ∈ Hom(k[xj , x
(1)
j , . . . , x

(m)
j | j = 1, . . . , n], A) |

ϕ(x
(l)
j ) = a

(l)
j , F

(s)
i (a

(l)
j ) = 0}

= Hom
(
k[xj , x

(1)
j , . . . , x

(m)
j ]

/(
F

(s)
i (x

(l)
j )

)
, A

)
.
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If we write Xm = Spec k[xj , x
(1)
j , . . . , x

(m)
j ]/

(
F

(s)
i (x

(l)
j )

)
, the last set is bijective

to Hom(Z,Xm).

Remark 2.6. The functor FX
m is also representable even for k-schemes of

non-finite type over k. The existence of jet schemes for a wider class of schemes
is presented in [49].

Example 2.7. For X = A
n
k , it follows that Xm = A

n(m+1)
k . Indeed, this is

the case that all fi = 0, therefore all F
(s)
i = 0, in the proof of Theorem 2.2.

Example 2.8. Let X be a hypersurface in A
3
k defined by f = xy + z2 = 0.

Then X2 is defined in A
9
k by

xy + z2 = x(1)y + xy(1) + 2zz(1)

= x(2)y + x(1)y(1) + xy(2) + z(1)z(1) + 2zz(2) = 0.

One can see that X2 is irreducible and not normal. Indeed, as X \ {0} is non-
singular, π−1

2 (X \{0}) is a 6-dimensional irreducible variety. On the other hand,
π−1
2 (0) is a hypersurface in A

6, and therefore it is of dimension 5. Since X2

is defined by 3 equations, every irreducible component of X2 has dimension
≥ 9− 3 = 6. By this, π−1

2 (0) does not produce an irreducible component of X2,
which yields the irreducibility of X2. Looking at the Jacobian matrix, one can
see that the singular locus of X2 is π−1

2 (0) which is of codimension one in X2.
Therefore, X2 is not normal.

Let X1 be the 1-jet scheme of X. Then for every closed point x ∈ X, the
set of closed points of π−1

1 (x) is the set of morphisms Spec k[t]/(t2) −→ X with
the image x. This set is the Zariski tangent space of X at x. Therefore, we can
regard X1 as the “tangent bundle” of X.

Example 2.9. Let X be a curve defined by x2 − y2 − x3 = 0 in A
2
k. Then

π−1
1 (X \{0}) −→ X \{0} is an A

1
k-bundle, therefore π

−1
1 (Xreg) is 2-dimensional.

On the other hand, π−1
1 (0) ≃ A

2
k. Hence, X1 has two irreducible components,

π−1
1 (Xreg) and π

−1
1 (0).

Definition 2.10. The system {ψm′,m : Xm′ −→ Xm}m<m′ is a projective
system. Let X∞ = lim

←−m
Xm and call it the space of arcs of X or arc space of X.

Note that X∞ is not of finite type over k if dimX > 0.

Remark 2.11. One may be afraid that the projective limit scheme lim
←−m

Xm

may not exist. But in our case we need not to worry, since for an affine scheme
X = SpecA, the m-jet scheme Xm = SpecAm is affine for every m. Here, the
morphisms ψ∗

m′,m : Am −→ Am′ corresponding to ψm′,m are a direct system.
It is well known that there is a direct limit A∞ = lim

−→m
Am in the category of

k-algebras. The affine scheme SpecA∞ is our projective limit of Xm. For a
general k-scheme X, we have only to patch affine pieces SpecA∞.
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Using the representability of FX
m , we obtain the following universal property

of X∞.

Proposition 2.12. Let X be a scheme of finite type over k. Then

Homk(Z,X∞) ≃ Homk(Z ×̂Spec k Spec k[[t]], X)

for an arbitrary k-scheme Z, where Z ×̂Spec k Spec k[[t]] means the formal com-
pletion of Z ×Spec k Spec k[[t]] along the subscheme Z ×Spec k {0}.

Proof. By the representability of FX
m we obtain an isomorphism of projec-

tive systems:

�� ��

Homk(Z,Xm+1)

��

≃ Homk

(
Z ×Spec k Spec k[t]/(tm+2), X

)

��

Homk(Z,Xm) ≃ Homk

(
Z ×Spec k Spec k[t]/(tm+1), X

)
.

Then, we obtain an isomorphism of the projective limits:

Homk(Z, lim←−
m

Xm) ≃ Homk

(
lim
−→
m

(
Z ×Spec k Spec k[t]/(tm+1)

)
, X

)
,

which gives the required isomorphism.

Remark 2.13. Consider the isomorphism of Proposition 2.12, in particular
the case Z = SpecA for a k-algebra A, we obtain

Homk(SpecA,X∞) ≃ Homk(SpecA[[t]], X).

Here, we note that in general A⊗k k[[t]] 6≃ A[[t]] ≃ A⊗̂k k[[t]], where A⊗̂k k[[t]] is
the completion of A⊗kk[t] by the ideal (t). Indeed, for example, for A = k[x], the
ring A[[t]] contains

∑∞
i=0 fi(x)t

i such that deg fi are unbounded, while A⊗kk[[t]]
does not contain such an element.

Now consider the case A = K for an extension field K ⊃ k; the bijection

Homk(SpecK,X∞) ≃ Homk(SpecK[[t]], X)

shows that a K-valued point of X∞ is an arc SpecK[[t]] −→ X.

Definition 2.14. Denote the canonical projection X∞ −→ Xm induced
from the surjection k[[t]] −→ k[t]/(tm+1) by ψm and the composite πm ◦ ψm

by π. When we need to specify the base space X, we write it by πX .
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A point x ∈ X∞ gives an arc αx : SpecK[[t]] −→ X and π(x) = αx(0), where
K is the residue field at x. As the case of m-jets, we denote both x ∈ X∞ and
α corresponding to x by the same symbol α.

For everym ∈ N, ψm(X∞) is a constructible set, since ψm(X∞) = ψm′,m(Xm′)
for sufficiently big m′ [18].

Definition 2.15. Let σm denote the canonical morphism X −→ Xm in-
duced from the inclusion k →֒ k[t]/(tm+1) (m ∈ N ∪ {∞}). Here, we define
k[t]/(tm+1) = k[[t]] for m =∞. As k →֒ k[t]/(tm+1) is a section of the projection
k[t]/(tm+1) −→ k, our morphism σm : X −→ Xm is a section of πm : Xm −→ X.

For a point x ∈ X, let K be the residue field at x; then

σm(x) : SpecK[t]/(tm+1) −→ X

is an m-jet which factors through SpecK −→ X whose image is x. Therefore,
σm(x) is the constant m-jet at x, this is denoted by xm.

Example 2.16. If X = A
n
k , then

X∞ = Spec k[xj , x
(1)
j , x

(2)
j , . . . | j = 1, . . . , n],

which is isomorphic to A
∞
k = Spec k[x1, x2, . . . , xi, . . . ]. Here, we note that the

set of closed points of A∞
k does not necessarily coincide with the set

k∞ := {(a1, a2, . . . ) | ai ∈ k}

(see the following theorem).

Theorem 2.17. ([23, Propositions 2.10 and 2.11]) Every closed point of
A

∞
k is a k-valued point if and only if the field k is not a countable.

The concept “thin” in the following definition was first introduced in [12].

Definition 2.18. Let X be a variety over k. An arc α : SpecK[[t]] −→ X
is said to be thin if α factors through a proper closed subvariety of X. An arc
which is not thin is called a fat arc.

An irreducible subset C in X∞ is called a thin set if C is contained in Z∞

for a proper closed subvariety Z ⊂ X. An irreducible subset in X∞ which is not
thin is called a fat set.

In case an irreducible subset C has the generic point γ ∈ C (i.e., the closure
γ contains C), C is a fat set if and only if γ is a fat arc.

The following was proved in [24, Proposition 2.5].

Proposition 2.19. Let X be a variety over k and α : SpecK[[t]] −→ X an
arc. Then the following hold:
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(i) α is a fat arc if and only if the ring homomorphism α∗ : OX,α(0) −→ K[[t]]
induced from α is injective;

(ii) Assume that α is fat. For an arbitrary proper birational morphism ϕ : Y −→
X, α is lifted to Y .

Remark 2.20. A fat set in X∞ for a variety X introduces a discrete valua-
tion on the rational function field K(X) of X. We do not give the construction
of the valuation here; the reader may refer to [24]. A Nash component (see the
next section) is a fat set, and the Nash map (see the next section) is just the
correspondence that associates a fat set to the valuation induced from the fat
set [24].

Example 2.21. A typical example of a fat set is an irreducible cylinder
(i.e., the pull back ψ−1

m (S) of a constructible set S ⊂ Xm) for a non-singular X.
Actually, take an m-jet αm : Spec k[t]/(tm+1) −→ X in C; then at a neighbor-
hood of x = αm(0) = πm(αm), X is étale over A

n
k . Therefore, we may assume

that X = A
n
k and x = 0. Assume that ψ−1

m (αm) is thin. Then it is contained
in Z∞ for some proper closed subset Z ⊂ X. Let the m-jet αm correspond to a
ring homomorphism

α∗
m : k[x1, . . . , xn] −→ k[t]/(tm+1), α∗

m(xi) =

m∑

j=1

a
(j)
i tj .

Let x
(j)
i be an indeterminate for every i = 1, . . . , n and j ≥ m+ 1. Let

α∗ : k[x1, . . . , xn] −→ k
(
x
(j)
i | i = 1, . . . , n, j ≥ m+ 1

)
[[t]]

be an arc defined by

α∗(xi) =

m∑

j=1

a
(j)
i tj +

∞∑

j=m+1

x
(j)
i tj .

Let α∗(f) = F0(a
(j)
i , x

(j)
i )+F1(a

(j)
i , x

(j)
i )t+ · · ·+Fℓ(a

(j)
i , x

(j)
i )tℓ+ · · · for f ∈ IZ .

Then as the x
(j)
i are indeterminates, there is an ℓ such that Fℓ 6= 0. Hence, we

obtain α ∈ ψ−1
m (C) such that α /∈ Z∞.

Example 2.22. ([6]) For a singular variety X, an irreducible cylinder is not
necessarily fat. Indeed, let X be the Whitney Umbrella, which is a hypersurface
defined by xy2 − z2 = 0 in A

3
k. For m ≥ 1, let

α∗
m : k[x, y, z]/(xy2 − z2) −→ k[t]/(tm+1)

be the m-jet defined by αm(x) = t, αm(y) = 0, αm(z) = 0. Then the cylinder
ψ−1
m (αm) is contained in Sing(X)∞, where Sing(X) = (y = z = 0). This is

proved as follows: Let an arbitrary α ∈ ψ−1
m (αm) be induced from

α∗ : k[x, y, z] −→ k[[t]]
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with

α∗(x) =
∞∑

j=1

ajt
j , α∗(y) =

∞∑

j=1

bjt
j , α∗(z) =

∞∑

j=1

cjt
j ,

where we note that a1 = 1. Then the condition α∗(xy2 − z2) = 0 implies that
the initial term of α∗(xy2) and that of α∗(z2) cancel each other. If α∗(y) 6= 0,
then the order of α∗(xy2) is odd, while if α∗(z) 6= 0, the order of α∗(z2) is even.
Hence if α∗(y) 6= 0 or α∗(z) 6= 0, then the initial term of α∗(xy2) and that of
α∗(z2) do not cancel each other. Therefore, α∗(y) = α∗(z) = 0, which shows
that ψ−1

m (αm) ⊂ Sing(X)∞.

3. Properties of jet schemes and arc spaces. Consider

Gm = A
1 \ {0} = Spec k[s, s−1]

as a multiplicative group scheme. For m ∈ N ∪ {∞}, the morphism

k[t]/(tm+1) −→ k[s, s−1, t]/(tm+1)

defined by t 7→ s · t gives an action

µm : Gm ×Spec k Spec k[t]/(tm+1) −→ Spec k[t]/(tm+1)

of Gm on Spec k[t]/(tm+1). Therefore, it gives an action

µXm : Gm ×Spec k Xm −→ Xm

of Gm on Xm. As µm is extended to a morphism:

µm : A1 ×Spec k Spec k[t]/(tm+1) −→ Spec k[t]/(tm+1),

we obtain the extension

(3.1) µXm : A1 ×Spec k Xm −→ Xm

of µXm.
Note that µXm({0}×α) = xm, where xm is the trivialm-jet on x = α(0) ∈ X.

Therefore, every orbit µXm(Gm × {α}) contains the trivial m-jet on α(0) in its
closure.

Proposition 3.1. For m ∈ N∪{∞}, let Z ⊂ Xm be a Gm-invariant closed
subset. Then the image πm(Z) is closed in X. In particular, the image πm(Z)
of an irreducible component Z of Xm is closed in X.
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Proof. Let Z ⊂ Xm be an Gm-invariant closed subset. Then we obtain

µXm(A1 × Z) = Z.

On the other hand, µXm({0}×Z) = σm ◦πm(Z) by the note after (3.1). There-
fore, as Z is closed, it follows that

Z ⊃ σm ◦ πm(Z) ⊃ σm
(
πm(Z)

)
,

which yields πm(Z) ⊃ πm(Z).

Proposition 3.2. Let f : X −→ Y be a morphism of k-schemes of finite
type. Then a canonical morphism f∞ : X∞ −→ Y∞ is induced such that the
following diagram is commutative:

X∞

f∞
//

πXm

��

Y∞

πY m

��

X
f

// Y.

Proof. The morphism f∞ is induced as the projective limit of fm (m ∈ N).

Proposition 3.3. Let f : X −→ Y be a proper birational morphism of k-
schemes of finite type such that f |X\W : X \W ≃ Y \ V , where W ⊂ X and
V ⊂ Y are closed. Then f∞ gives a bijection X∞ \W∞ −→ Y∞ \ V∞.

Proof. Let α ∈ Y∞ \ V∞. Then α(η) ∈ X \ V . As X \W ≃ Y \ V , we
obtain the following commutative diagram:

SpecK((t)) //

��

Y

��

SpecK[[t]]
α

// X.

Then, as f is a proper morphism, by the valuative criteria of properness, there
is a unique morphism α̃ : SpecK[[t]] −→ Y such that f ◦ α̃ = α. This shows the
bijectivity as required.

The following is the version for m =∞ of Proposition 2.4.
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Proposition 3.4. If f : X −→ Y is an étale morphism, then

X∞ ≃ Y∞ ×Y X.

Proof. As lim
←−m

(Ym×Y X) = (lim
←−m

Ym)×Y X, the case m =∞ is reduced
to the case m <∞, which is proved in Proposition 2.4.

Proposition 3.5. There is a canonical isomorphism (X×Y )m ≃ Xm×Ym,
for every m ∈ N ∪ {∞}.

Proof. For an arbitrary k-scheme Z and m <∞,

Homk(Z,Xm × Ym) ≃ Homk(Z,Xm)×Homk(Z, Ym),

and the right-hand side is isomorphic to

Homk

(
Z ×Spec k Spec k[t]/(tm+1), X

)
×Homk

(
Z ×Spec k Spec k[t]/(tm+1), Y

)

≃ Homk

(
Z ×Spec k Spec k[t]/(tm+1), X × Y

)

≃ Homk

(
Z, (X × Y )m

)
.

The case m =∞ follows from this.

Proposition 3.6. Let f : X −→ Y be an open immersion (resp. closed im-
mersion) of k-schemes of finite type. Then the induced morphism fm : Xm −→
Ym is also an open immersion (resp. closed immersion) for every m ∈ N∪{∞}.

Proof. The open case follows from Lemma 2.5 and Proposition 3.4. For the
closed case, we may assume that Y is affine. If Y is defined by fi (i = 1, . . . , r)
in an affine space, then X is defined by fi (i = 1, . . . , r, . . . , u) with r ≤ u in the

same affine space. Then Ym is defined by F
(s)
i (i = 1, . . . , r, s ≤ m) and Xm

is defined by F
(s)
i (i = 1, . . . , r, . . . , u, s ≤ m) in the corresponding affine space.

This shows that Xm is a closed subscheme of Ym.

Remark 3.7. In the above proposition we see that the properties of open or
closed immersion of the base spaces is inherited by the morphism of the space of
jets and arcs. But some properties are not inherited. For example, surjectivity
and closedness are not inherited.

Example 3.8. There is an example that f : X −→ Y is surjective and closed
but f∞ : X∞ −→ Y∞ is neither surjective nor closed. Let X = A

2
C
and G =〈(

ǫ 0
0 ǫn−1

)〉
be a finite cyclic subgroup in GL(2,C) acting onX, where n ≥ 2 and ǫ

is a primitive n-th root of unity. Let Y = X/G be the quotient of X by the action
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of G. Then it is well known that the singularity appearing in Y is an An−1-sing-
ularity. Then the canonical projection f : X −→ Y is closed and surjective. We
will see that these two properties are not inherited by f∞ : X∞ −→ Y∞. Let p
be the image f(0) ∈ Y . Then by the commutativity of

X∞

f∞
//

πX

��

Y∞

πY

��

X
f

// Y,

we obtain π−1
X (0) = f−1

∞ ◦ π−1
Y (p). Here, π−1

X (0) is irreducible, since X is non-
singular. On the other hand π−1

Y (p) has (n− 1)-irreducible components by [36],
[21]. Therefore the morphism f∞ is not surjective for n ≥ 3. As X \ {0} −→
Y \ {p} is étale, the morphism (X \ {0})∞ −→ (Y \ {p})∞ is also étale by
Proposition 3.4. Since Y∞ is irreducible, f∞ is dominant. Therefore, f∞ is not
closed.

Next we think of the irreducibility of the arc space or jet schemes. The
following theorem was proved in [27]. In [22] we gave another proof by using
[21, Lemma 2.12] and a resolution of the singularities. Here we present a proof
without using a resolution.

Theorem 3.9. If the characteristic of k is zero, then the space of arcs of a
variety X is irreducible.

Proof. By [21, Lemma 2.12] we obtain the following:

(1) Given any arc φ : Spec k′[[s]] −→ X, we construct an arc Φ such that φ ∈ {Φ}
and Φ(0) = Φ(η) = φ(η).

(2) We construct an arc Ψ such that Φ ∈ {Ψ} and Ψ(η) ∈ X \ SingX.

Now for this Ψ we apply the procedure (1) again, obtaining a new arc Ψ′

such that Ψ ∈ {Ψ′} and Ψ′(0) = Ψ′(η) = Ψ(η) ∈ X \ SingX. If we let π(Ψ′) =
Ψ′(0) = λ, then Ψ′ ∈ π−1(λ). As λ ∈ X \ SingX, it follows that

Ψ′ ∈ π−1(λ) ⊂ π−1(ρ),

where ρ is the generic point of X. This yields φ ∈ π−1(ρ), which is an irreducible
closed subset.

Example 3.10. ([21, Example 2.13]) If the characteristic of k is p > 0,
X∞ is not necessarily irreducible. For example, the hypersurface X defined by
xp − ypz = 0 has an irreducible component in (SingX)∞ which is not in the
closure of X∞ \ (SingX)∞.
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Example 3.11. ([23]) Let X be a toric variety over an algebraically closed
field of arbitrary characteristic. Then X∞ is irreducible.

Next let us think of m-jet schemes. A space of m-jets is not necessarily
irreducible even if the characteristic of k is zero (see Example 2.9).

Theorem 3.12. ([34]) If X is a variety of locally complete intersection over
an algebraically closed field of characteristic zero, then Xm is irreducible for all
m ≥ 1 if and only if X has rational singularities.

Another situation in which a geometric property of space of jets determines
the singularities on the base space is as follows.

Theorem 3.13. ([14]) Let X be a reduced divisor on a nonsingular variety
over C. Then X has terminal singularities if and only if Xm is normal for every
m ∈ N.

4. Introduction to the Nash problem. In this section, we assume the
existence of resolutions of singularities. It is sufficient to assume that the char-
acteristic of k is zero. One of the most mysterious and fascinating problems in
arc spaces is the Nash problem, which was posed by Nash in a preprint in 1968.
It is a question about the Nash components and the essential divisors. First we
introduce the concept of essential divisors.

Definition 4.1. Let X be a variety, g : X1 −→ X a proper birational mor-
phism from a normal variety X1, and E ⊂ X1 an irreducible exceptional divisor
of g. Let f : X2 −→ X be another proper birational morphism from a normal
variety X2. The birational map f−1 ◦ g : X1 99K X2 is defined on a (nonempty)
open subset E0 of E. Because of Zariski’s main theorem, the “undefined locus”
of a birational map between normal varieties is of codimension ≥ 2. The closure
of (f−1 ◦ g)(E0) is called the center of E on X2.

We say that E appears in f (or inX2), if the center of E onX2 is also a divisor.
In this case the birational map f−1 ◦ g : X1 99K X2 is a local isomorphism at the
generic point of E and we denote the birational transform of E on X2 again by
E. For our purposes E ⊂ X1 is identified with E ⊂ X2. Such an equivalence
class is called an exceptional divisor over X.

Definition 4.2. Let X be a variety over k and let SingX be the singular
locus of X. In this paper, by a resolution of the singularities of X we mean
a proper, birational morphism f : Y −→ X with Y non-singular such that the
restriction Y \ f−1(SingX) −→ X \ SingX of f is an isomorphism.

Definition 4.3. An exceptional divisor E over X is called an essential
divisor over X if for every resolution f : Y −→ X, the center of E on Y is an
irreducible component of f−1(SingX).
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For a given resolution f : Y −→ X, the center of an essential divisor is called
an essential component of Y .

Proposition 4.4. Let f : Y −→ X be a resolution of the singularities of a
variety X. The set

E = EY/X =
{
irreducible components of f−1(SingX)

which are centers of essential divisors over X
}

corresponds bijectively to the set of all essential divisors over X.
In particular, the set of essential divisors over X is a finite set.

Proof. The map

{essential divisors over X} −→ EY/X , E 7→ center of E on Y

is surjective by the definition of essential components. To prove the injectivity,
take an essential component C and then blow up Y ′ −→ Y with center C. Then
there is a unique divisor E ⊂ Y ′ dominating C. Let Y ′′ −→ Y ′ be a resolution
of the singularities of Y ′. Then E is the unique exceptional divisor on Y ′′ that
dominates C. Therefore, every exceptional divisor over X with center C ⊂ Y
has center contained in E on a resolution Y ′′ of the singularities of X. Therefore,
by the definition of essential divisor, this E is the unique essential divisor whose
center on Y is C.

C. Bourvier and G. Gonzalez-Sprinberg also introduced “essential divisors”
and “essential components” in [2] and [3], but we should note that their defi-
nitions are different from ours. In order to distinguish them we give different
names to their “essential divisors” and “essential components”.

Definition 4.5. ([2], [3]) An exceptional divisor E over X is called a BGS-
essential divisor over X if E appears in every resolution. An exceptional divisor
E over X is called a BGS-essential component over X if the center of E on every
resolution f of the singularity of X is an irreducible component of f−1(E′),
where E′ is the center of E on X.

We will see how different they are from our essential divisors and essential
components. First we see that they coincide for the 2-dimensional case. To show
this we need to introduce the concept of minimal resolution.

Definition 4.6. A resolution f : Y −→ X of the singularities of X is called
the minimal resolution if for any resolution g : Y ′ −→ X, there is a unique
morphism Y ′ −→ Y over X.

It is known that for a surface X the minimal resolution f : Y −→ X exists.
It is characterized by the fact that Y has no exceptional curve of the first kind
over X.
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For a higher dimensional variety X, the minimal resolution does not neces-
sarily exist. For example, X = {xy− zw = 0} ⊂ A

4 has two resolutions, neither
of which dominates the other. These two resolutions are obtained as follows:
first take a blow-up f : Ỹ −→ X at the origin of X which has a unique singu-
lar point at the origin. Then f is a resolution of the singularity of X and the
exceptional divisor E of f is isomorphic to P

1 × P
1. Here we have two con-

tractions g1 : Y1 −→ X, g2 : Y2 −→ X whose restrictions are the first projection
p1 : E = P

1 × P
1 −→ P

1 and the second projection p2 : E = P
1 × P

1 −→ P
1,

respectively. Both Yi’s are non-singular, therefore the fi’s are resolutions of the
singularity of X. It is clear that there is no morphism between Y1 and Y2 over X.

Proposition 4.7. If X is a surface, then each set of “essential divisors”,
“BGS-essential divisors” and “BGS-essential components” are bijective with the
set of the components of the fiber f−1(SingX), where f : Y −→ X is the minimal
resolution. These are also essential components on the minimal resolution.

Remark 4.8. The four concepts “essential divisor”, “essential component”,
“BGS-essential divisor” and “BGS-essential component” are mutually different
in general.

First, our essential component is different from the others, because it is a
closed subset on a specific resolution and the others are all equivalence classes
of divisors.

Next, a BGS-essential divisor is different from a BGS-essential component or
an essential divisor. Indeed, for X = (xy−zw = 0) ⊂ A

4
k, the exceptional divisor

obtained by a blow-up at the origin is the unique essential divisor and also the
unique BGS-essential component, while there is no BGS-essential divisor, since
X has a resolution whose exceptional set does not contain a divisor.

Finally a BGS-essential component and an essential divisor are different. In-
deed, consider a cone generated by (0, 0, 1), (2, 0, 1), (1, 1, 1), (0, 1, 1) in R

3. It
is well known that a cone generated by integer points in a real Euclidean space
defines an affine toric variety (see [15, 38] for a basic notion of toric variety).
Let X be the affine toric variety defined by this cone. Then the canonical sub-
division adding a 1-dimensional cone R≥0(1, 0, 1) is a resolution of X. As the
singular locus of X is of dimension one, there is no small resolution. Therefore,
the divisor D(1,0,1) is the unique essential divisor, while D(1,1,2) and D(2,1,2) are
BGS-essential components by the criterion [2, Theorem 2.3].

Definition 4.9. Let X be a variety and π : X∞ −→ X the canonical pro-
jection. An irreducible component C of π−1(SingX) is called a Nash component
if it contains an arc α such that α(η) /∈ SingX. This is equivalent to saying
C 6⊂ (SingX)∞.

The following lemma was quoted earlier for the irreducibility of the space of
arcs (Theorem 3.9).
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Lemma 4.10. ([21]) If the characteristic of the base field k is zero, then every
irreducible component of π−1(SingX) is a Nash component.

We note that this lemma does not hold for the positive characteristic case.
Indeed, Example 3.10 is an example where π−1(SingX) has an irreducible com-
ponent which is not a Nash component.

Let f : Y −→ X be a resolution of the singularities of X and El (l = 1, . . . , r)
the irreducible components of f−1(SingX). Now we are going to introduce a
map N which is called the Nash map





Nash components
of the space of arcs

of X





N
−→





essential
components

on Y



 ≃




essential
divisors
over X



 .

4.1. Construction of the Nash map. The resolution f : Y −→ X induces a
morphism f∞ : Y∞ −→ X∞ of schemes. Let πY : Y∞ −→ Y be the canonical
projection. As Y is non-singular, (πY )

−1(El) is irreducible for every l. Denote
by (πY )

−1(El)
o the open subset of (πY )

−1(El) consisting of the points corre-
sponding to arcs β : SpecK[[t]] −→ Y such that β(η) /∈

⋃
lEl. Let Ci (i ∈ I) be

the Nash components of X. Denote by Co
i the open subset of Ci consisting of

the points corresponding to arcs α : SpecK[[t]] −→ X such that α(η) /∈ SingX.
As Ci is a Nash component, we have Co

i 6= ∅. The restriction of f∞ gives

f ′∞ :

r⋃

l=1

(πY )
−1(El)

o −→
⋃

i∈I

Co
i .

By Proposition 3.3, f ′∞ is surjective. Hence, for each i ∈ I there is a unique li
such that 1 ≤ li ≤ r and the generic point βli of (πY )

−1(Eli)
o is mapped to the

generic point αi of C
o
i . By this correspondence Ci 7→ Eli we obtain a map

N :





Nash components
of the space of arcs
through SingX



 −→





irreducible
components

of f−1(SingX)



 .

Lemma 4.11. The map N is an injective map to the subset {essential com-
ponents on Y }.

Proof. Let N (Ci) = Eli . Denote the generic point of Ci by αi and the
generic point of (πY )

−1(El) by βl. If Eli = Elj for i 6= j, then αi = f ′∞(βli) =
f ′∞(βlj ) = αj , a contradiction.

To prove that the {Eli : i ∈ I} are essential components on Y , let Y ′ −→ X
be another resolution and Ỹ −→ X a divisorial resolution which factors through
both Y and Y ′. Let E′

li
⊂ Y ′ and Ẽli ⊂ Ỹ be the irreducible components of the

exceptional sets corresponding to Ci. Then we can see that Eli and E′
li
are the

image of Ẽli . This shows that Ẽli is an essential divisor over X and therefore
Eli is an essential component on Y .
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Problem 4.12. Is the Nash map





Nash components
of the space of arcs
through SingX





N
−→





essential
components

on Y



 ≃





essential
divisors
over X



 .

bijective?

After the preprint in which Nash posed this problem was circulated in 1968,
Bouvier, Gonzalez-Sprinberg, Hickel, Lejeune-Jalabert, Nobile, Reguera-Lopez
and others (see [2, 17, 20, 29, 30, 31, 37, 42]) worked on the arc space of a
singular variety related to this problem.

Recently, the Nash problem has been answered affirmatively for a toric variety
of arbitrary dimension, but has been negatively answered in general by Ishii and
Kollár [21].

Here, we show known results for this problem.

Theorem 4.13. ([36]) The Nash problem is answered affirmatively for an
An-singularity (n ∈ N), where an An-singularity is the hypersurface singularity
defined by xy − zn+1 = 0 in A

3
k.

Theorem 4.14. ([42]) The Nash problem is answered affirmatively for a
minimal surface singularity. Here, a minimal surface singularity means a ra-
tional surface singularity with the reduced fundamental cycle. The fundamental
cycle is induced by M. Artin (see [1] for the definition).

Theorem 4.15. ([31], [43]) The Nash problem is answered affirmatively for
a sandwiched surface singularity. Here, a sandwiched surface singularity means
the formal neighborhood of a singular point on a surface obtained by blowing up
a complete ideal in the local ring of a closed point on a non-singular algebraic
surface. A complete ideal is defined by Zariski and Samuel (see [50, Vol. II,
Appendix 4]), but the idea of a sandwiched singularity is that it is a singularity
which is birationally sandwiched by non-singular surfaces.

These are results on rational surface singularities. The following gives an
affirmative answer for some non-rational surface singularities:

Theorem 4.16. ([40]) The Nash problem is answered affirmatively for a
normal surface singularity with the reduced fiber E of the singular point on the
minimal resolution such that E ·Ei < 0 for every irreducible component Ei of E.

This result is generalized in [33] to a wider class of surface singularities. We
omit the statement, since it is not simple.

The following results are for arbitrary dimension.

Theorem 4.17. ([21]) The Nash problem is answered affirmatively for a
toric singularity of arbitrary dimension.
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Theorem 4.18. ([24]) The Nash problem is answered affirmatively for a
non-normal toric variety of arbitrary dimension.

We have a notion of the local Nash problem which is a slight modification of
the Nash problem [25].

Theorem 4.19. ([25]) The local Nash problem holds true for a quasi-ordi-
nary singularity. Here, a quasi-ordinary singularity is a hypersurface singular-
ity which is a finite cover over a non-singular variety with the normal crossing
branch locus. We note that a quasi-ordinary singularity is not necessarily nor-
mal.

The paper [41] gives an affirmative answer to the Nash problem for a certain
class of higher dimensional non-toric singularities.

So far we have seen the affirmative answers. But there are negative examples
given in [21].

Example 4.20. LetX be a hypersurface defined by x31+x
3
2+x

3
3+x

3
4+x

6
5 = 0

in A
5
C
. Then the number of the Nash components is one, while the number of

the essential divisors is two. Therefore the Nash map is not bijective.

By the above example we can construct counterexamples to the Nash problem
for any dimension greater than 3. At this moment the Nash problem is still open
for two- and three-dimensional varieties. Now we can formulate a new version
of the Nash problem.

Problem 4.21. What is the image of the Nash map? For two- and three-
dimensional cases, does the image of the Nash map coincide with the set of
essential divisors?

Related to this problem, we have one characterization of the image of the Nash
map given by Reguera [44]. To formulate her result, we introduce the concept
of “wedge”.

Definition 4.22. Let K ⊃ k be a field extension. A K-wedge of X is a
k-morphism γ : SpecK[[λ, t]] −→ X. A K-wedge γ can be identified to a K[[λ]]-
point on X∞. We call the special arc of γ the image in X∞ of the closed point 0
of SpecK[[λ]]. We call the generic arc of γ the image in X∞ of the generic point
η of SpecK[[λ]].

Theorem 4.23. ([44]) Let E be an essential divisor over X and f : Y −→ X
a resolution of the singularities of X on which E appears. Let α ∈ X∞ be the
generic point of f∞

(
π−1
Y (E)

)
and kE the residue field of α. Then the following

conditions are equivalent.
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(i) E belongs to the image of the Nash map.
(ii) For any resolution of the singularities g : Y ′ −→ X and for any field ex-

tension K of kE, any K-wedge γ on X whose special arc is α and whose
generic arc belongs to π−1

X (SingX), lifts to Y ′.
(iii) There exists a resolution of the singularities g : Y ′ −→ X satisfying condi-

tion (ii).

As a corollary of this theorem, we also obtain Theorem 4.15.

There are some generalizations of the Nash problem for a pair (X,Z) consist-
ing of a variety X and a closed subset Z (see [39, 16]). These promise to be a
new area of active research.
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