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Abstract. We obtain a new geometric criterion for disconjugacy of a
second order linear differential equation which, unlike the existing criteria,
does not require the smallness of the coefficients of the equation. We then

apply the new criterion to periodic boundary value problems.

Résumé. Nous obtenons un nouveau critère géométrique pour que les
opérateurs différentiels linéaires du second ordre soient disconjugué. A la

différence des critères existants, le nôtre ne nécessite pas la ‘petitesse’ des
coefficients. Nous discutons ensuite des applications de notre critère au cas
des problèmes où les conditions au bord sont périodiques.

1. Introduction. A linear differential equation

(1) (Lx)(t) := x′′ + p(t)x′ + q(t)x = 0, I := (α, β) ⊂ R,

having locally integrable coefficients p, q : I 7→ R, is called disconjugate on an
interval J ⊂ I (open or closed or half-open) if any of its solutions x 6≡ 0 can not
have two zeros in J . The property of disconjugacy became a subject of intense
study in early 1950s (see, e.g., [16]– [13]), in particular, due to the exceptional
role that it plays in the qualitative theory of second order linear differential
equations. Traditionally (see, e.g., the literature cited above), most of the suffi-
cient conditions for disconjugacy, formulated for differential equation (1) written

in the form x′′ + Q(t)x = 0 (or
(
P (t)x′

)′
+ Q(t)x = 0), include some kind of

‘smallness’ assumption on the coefficient Q. In the present paper (which also
may serve as a brief introduction to the theory of disconjugacy for second order
linear differential equations) we obtain a new ‘geometric’ sufficient condition for
disconjugacy for a differential equation of the general form (1), that does not
involve any assumptions on the smallness of the coefficients (Theorem 9 below).
Compared to the existing (‘analytic’) criteria for disconjugacy, the new criterion
turn out to be somewhat more flexible (due to the geometric form of the con-
ditions on the coefficients). Below we also exploit the classical approach, and
obtain some analytic criteria for disconjugacy (Criteria 8–10) by making use of
certain test functions depending on the coefficients of the equation.
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The paper is organized as follows. In Sections 2–4 we formulate and prove
several analytic criteria for disconjugacy. We also discuss the applications of the
property of disconjugacy to the problem of factorization of linear ordinary differ-
ential operators, and to the proof of the generalized Rolle’s theorem. Section 5
is devoted to the new geometric criterion for disconjugacy, and its applications
to periodic boundary value problems.

2. Preliminaries.

2.1. Cauchy’s and Green’s functions.

Definition 1. A function C : I × [α, t] → R is called Cauchy’s function of
equation (1) if

(LC)(·, s) = 0 for almost all t > s, C(s, s) = 0,
∂C(s, s)

∂t
= 1 (s ∈ I).

Note that Cauchy’s function always exists and is unique.

Definition 2. A function G : [a, b]2 → R is called a Green’s function of the
boundary value problem

(2) (Lx)(t) = f(t) (t ∈ I), x(a) = 0, x(b) = 0 (a, b ∈ I),

provided that it satisfies the following conditions:

(1) G is continuous on [a, b]2;

(2) ∂G(·,s)
∂t

is absolutely continuous in the triangles a 6 s < t 6 b and a 6 t <
s 6 b, and

∂G(s+, s)

∂t
−

∂G(s−, s)

∂t
= 1;

(3) (LG)(·, s) = 0 if t 6= s;
(4) G(a, s) = 0, G(b, s) = 0.

If the boundary value problem (2) has the unique solution x, then it has

the unique Green’s function, and x(t) =
∫ b

a
G(t, s)f(s) ds. Also, one has the

following identity

G(t, s) =




−C(b,t)C(s,a)

C(b,a) , a 6 s < t,

−C(t,a)C(b,s)
C(b,a) , t 6 s 6 b,

which implies that if C(t, s) > 0, for a 6 s < t 6 b, then G(t, s) < 0 for
(t, s) ∈ (a, b)2.
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2.2. Disconjugacy and Sturm theorems. We will need the following results due
to Sturm: Separation of zeros theorem and Comparison theorem (see, e.g., [19,
p. 252], [5, p. 81]).

Theorem 1 (Separation of zeros). Let a, b ∈ I, suppose that x is a solution of
equation (1) such that x(a) = x(b) = 0, x(t) 6= 0 for any t ∈ (a, b). Then any
other solution of (1), linearly independent with x, has only one zero in (a, b).

The proof can be found, e.g., in [4].
Let a ∈ I, x be a solution of equation (1) such that x(a) = 0. A point

ρ+(a) > a (ρ−(a) < a) is called right (left) conjugate point of a if

x
(
ρ±(a)

)
= 0, x(t) 6= 0 in

(
a, ρ+(a)

)
(in

(
ρ−(a), a

)
).

If x(t) 6= 0 on (a, β) (respectively, (α, a)), we define ρ+(a) = β (ρ−(a) = α).

Corollary 1. Suppose that ρ+(t) 6= β, ρ−(t) 6= α for all t ∈ I. Then functions
ρ± are strictly increasing. Furthermore, ρ+

(
ρ−(t)

)
= ρ−

(
ρ+(t)

)
= t (t ∈ I), i.e.,

the functions ρ± are the inverses of each other and map continuously any interval
in I to an interval in I.

Proof. Let t2 > t1, x(t1) = y(t2) = 0 (x and y are solutions of (1)). Suppose
that ρ+(t2) 6 ρ+(t1). The equality here, meaning that x

(
ρ+(t2)

)
= y

(
ρ+(t1)

)
=

0, contradicts to the definition of a conjugate point. Meanwhile, the strict in-
equality contradicts Theorem 1 (since y would have two zeros between two con-
secutive zeros of x). Consequently, ρ+(t2) > ρ+(t1).

The proof for function ρ− is similar. The proof of the second statement
follows from the definition of conjugate points and properties of strictly monotone
functions. ¤

Remark 1. Note that if ρ+(a) = β or ρ−(a) = α for a certain a, then functions
ρ± might not be monotone on interval I, but only on (α, b) (or on (a, β)), where
b := inf{t : ρ+(t) = β}, a := sup{t : ρ−(t) = α}. For instance, the equation

(3) x′′ −
A sinh t

A cosh t − 1
x′ +

1

A cosh t − 1
x = 0 (A > 2, I = (−∞,+∞))

has a solution

x(t) =
A − cosh a

A cosh a − 1
sinh t +

sinh a

A cosh a − 1
(cosh t − A)

which satisfies x(a) = 0, x′(a) = 1. Therefore, we obtain

ρ+(t) =

{
ln A−et

1−Aet if −∞ < t < ln 1
A

,

+∞ if t > ln 1
A

.
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Analogously,

ρ−(t) =

{
ln A−et

1−Aet if ln A < b < +∞,

−∞ if t 6 ln A.

The same situation holds in the case of the equation

(4) x′′ −
2(2t − b)

t2 + (t − b)2
x′ +

4

t2 + (t − b)2
x = 0 (b > 0);

here

ρ+(t) =

{
b(t−b)
2t−b

if t < 1
2b,

+∞ if t > 1
2b;

ρ−(t) =

{
b(t−b)
2t−b

if t > 1
2b,

−∞ if 6 1
2b.

Definition 3. We say that a differential equation (1) is disconjugate on an
open interval J ⊂ I if any of its non-trivial solutions has at most one zero in J . If
the latter is the case, we say that J is an interval of disconjugacy of equation (1).

Thus, J is an interval of disconjugacy of equation (1) if and only if ρ±(a) /∈ J
for any a ∈ J .

It follows from the above representation of functions ρ± that the intervals for
disconjugacy of equation (3) are [a, ln A−ea

1−Aea ) if a < ln 1
A

, or [a,+∞) if a > ln 1
A

,

while the intervals of disconjugacy of equation (4) are [a, b(a−b)
2a−b

) if a < 1
2b, or

[a,+∞), if a > 1
2b.

Definition 4. We denote by T(J) the class of linear differential operators L
such that the corresponding homogeneous equation Lx = 0 is disconjugate on
interval J ⊂ I.

Let (a, b) ⊂ I, suppose that an → a+, bn → b− (an → −∞, bn → +∞ in the
case a = α = −∞, b = β = +∞). Then

(5) T
(
(a, b)

)
=

∞⋂
n=1

T([an, bn]) =
∞⋂

n=1
T

(
(an, bn)

)
.

As follows from the definition of the property of disconjugacy and the def-
inition of Cauchy’s function, if equation (1) is disconjugate on interval J =
[a, b) ⊂ I, then C(t, s) > 0 in the triangle a 6 s < t < b. The disconjugacy
of equation (1) on an interval [a, b] implies the existence of the unique solution
of problem (2), so the Green’s function of this problem satisfies G(t, s) < 0 on
(a, b)2.

Theorem 2 (Comparison theorem). Let

Liy := y′′ + p(t)y′ + qi(t)y = 0, i = 1, 2, q1(t) 6 q2(t) (t ∈ I).

If L2 ∈ T(J), then L1 ∈ T(J).

The proof of Theorem 2 can be found, e.g., in [4].
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2.3. Properties of class T(J).

Theorem 3. Let a, b ∈ I. Then T
(
(a, b)

)
= T

(
(a, b]

)
= T

(
[a, b)

)
.

Proof. It suffices to check inclusion T
(
(a, b)

)
⊂ T

(
[a, b)

)
, the rest follows by

symmetry.
Let L ∈ T

(
(a, b)

)
. Suppose that L /∈ T

(
[a, b)

)
. Then there exists a solution v

of equation (1) such that v(a) = v(c) = 0 (a < c < b), v(t) > 0 in (a, c)
(note that v has at least two zeros in [a, b), and at most one zero in (a, b)). By
definition, c = ρ+(a) (a = ρ−(c)). Let us choose c1 ∈ (c, b) so that v(t) < 0 in
(c, c1). We put a1 = ρ−(c1). According to Corollary 1 a < a1 < c. Let x be
the corresponding solution of equation (1), i.e., x(c1) = x(a1) = 0, x(t) > 0 in
(a1, c1). Since L ∈ T([a1, c1]), there exists the unique solution y of equation (1)
that satisfies y(a1) = y(c1) = 1. We have y(t) > 0 on [a1, c1] (as a continuous
function taking the same values at the endpoints of the interval, function y can
have only even number of zeros, hence, due to disconjugacy, none of them). We
note that y is linearly independent with v and with x. According to Theorem 1,
y has exactly one zero in both intervals (a, a1) and (c, c1), that is, y has two zeros
in (a, b). The latter contradicts to disconjugacy of equation (1) on (a, b). ¤

Theorem 4. (1) If there exists a solution of equation (1) that is nowhere zero
on [a, b] ⊂ I(
(a, b) ⊂ I

)
, then L ∈ T([a, b]) (L ∈ T

(
(a, b)

)
).

(2) If L ∈ T([a, b], [a, b] ⊂ I) (L ∈ T
(
[a, b)

)
, [a, b) ⊂ I), then there exists a

solution of equation (1) that is nowhere zero on [a, b]
(
(a, b)

)
.

Proof. (1) The statement follows immediately from Theorem 1.
(2) Let J = [a, b], [a, b] ⊂ I. Let us determine solutions y1(t) and y2(t)

by initial conditions y1(a) = 0, y′
1(a) = 1 and y2(b) = 0, y′

2(b) = −1. Since
L ∈ T([a, b]), one has y1(t) > 0 if t ∈ (a, b], and y2(t) > 0 if t ∈ [a, b). The
solution y1(t) + y2(t) is the one required. If L ∈ T

(
[a, b)

)
, then the required

solution is y1. ¤

It is possible that there are no solutions preserving sign on [a, b). For instance,

consider the differential operator L := d2

dt2
+ 1 ∈ T

(
[0, π)

)
. Then any solution of

equation Lx = 0 has precisely one zero in [0, π).

3. Applications of disconjugacy. Below we prove two theorems which
demonstrate the role of the property of disconjugacy in the theory of differential
equation (1). These are the Factorization Theorem (on representation of a linear
ordinary differential operator L as the product of linear differential operators of
the first order, see, e.g., [16], [12]) and the Generalized Rolle’s Theorem (see,
e.g., [17, p. 63]).

Theorem 5 (Factorization Theorem). Suppose J = [a, b] ⊂ I or J = (a, b)
⊂ I. One has L ∈ T(J) if and only if there exist functions hi, i = 0, 1, 2
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such that h′
0, h1 are absolutely continuous, h2 is summable on J , hi(t) > 0,

h0(t)h1(t)h2(t) ≡ 1 on J , and

(6) (Lx)(t) = h2(t)
d

dt
h1(t)

d

dt
h0(t)x(t) (t ∈ J, x′absolutely continuous on J).

Proof. Necessity. Let L ∈ T(J). According to Theorem 4 there exists a
solution y of equation (1) such that y(t) > 0 on J . Let u be a solution of
equation (1) linearly independent with y and such that w(t) := [y, u](t) > 0.
Consider the linear differential operator of the second order

L̂x :=
w

y

dt

dt

y2

w

dt

dt

x

y
.

Since functions y, u form a fundamental system of solutions of both equation (1)

and equation L̂x = 0, the top coefficient in L̂ is equal to w
y

y2

w
1
y

≡ 1, then

Lx ≡ L̂x. These conditions are satisfied if h0 = 1
y
, h1 = y2

w
, h2 = w

y
.

Sufficiency. Suppose that we have identity 6. Then function y(t) := 1
h0(t)

> 0

(t ∈ J) is a solution of equation (1) satisfying the conditions of Theorem 4. This
implies that L ∈ T(J). ¤

Theorem 6 (Generalized Rolle’s Theorem). Let J = [a, b] ⊂ I or J = (a, b) ⊂
I, L ∈ T(J). Suppose that function u has absolutely continuous first derivative
on J , and function Lu is continuous. If there exist m (m > 2) geometrically
distinct zeros of u in J , then Lu has at least m − 2 geometrically distinct zeros
in J .

Proof. According to Theorem 5 one has representation (6). The function
h0u has m geometrically distinct zeros in J . By Rolle’s theorem, both functions
d
dt

h0u and h1
d
dt

h0u have at least m− 1 geometrically distinct zeros in J . Again
by Rolle’s theorem, the function Lu has at least m − 2 geometrically distinct
zeros in J . ¤

4. Criteria for disconjugacy.

4.1. Basic criteria. Below we formulate several known criteria for disconjugacy
based on Theorems 2 and 4.

Criterion 1. Let I = (−∞,+∞), p(t) ≡ p = const, q(t) ≡ q = const. Then
differential equation (1) having constant coefficients p(t) ≡ p, q(t) ≡ q is discon-
jugate on I if and only if the roots of its characteristic equation λ2 + pλ + q = 0
are real.

Proof. Let ν be a real root of the characteristic equation. Then function
x(t) := eνt is a solution of equation (1) nowhere vanishing on I. According to
the first statement of Theorem 4, equation (1) is disconjugate on I.
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Conversely, let (1) be disconjugate on I. Suppose that the characteristic
equation has roots γ ± δi, δ 6= 0. Then solution x(t) = eγt cos δt of equation (1)
has infinitely many zeros in I, which contradicts its disconjugacy on I. ¤

Let us consider equation

(7) x′′ +
p

t
x′ + q(t)x = 0

(
t ∈ I := (0,+∞)

)
, where p = const .

Criterion 2. If q(t) 6
(p−1)2

4t2
, then equation (7) is disconjugate on I :=

(0,+∞).

Proof. Euler equation x′′ + p
t
x′ + (p−1)2

4t2
x = 0 is disconjugate on I by The-

orem 4 since it has solution x(t) = t
1−p

2 , which is nowhere equal to zero on I
(let us also take into account (5)). According to Theorem 2, equation (7) is also
disconjugate on this interval. ¤

The next sufficient condition of disconjugacy is due to A. M. Lyapunov [2]
(see, e.g., 3 for the proof).

Criterion 3. Suppose that p(t) ≡ 0, q(t) > 0 and
∫ b

a
q(t) dt 6 4

b−a
. Then

L ∈ T([a, b]).

Corollary 2. Suppose that p(t) ≡ 0, and

∫ b

a

q+(t) dt 6
4

b − a
,

where q+(t) := q(t) if q(t) > 0, q+(t) := 0 if q(t) 6 0. Then L ∈ T([a, b]).

Proof. As we have already proved, L+ := d2

dt2
+ q+ ∈ T([a, b]). At the same

time, since q(t) 6 q+(t), one has L ∈ T([a, b]). ¤

We note that the constant 4 in the formulation of Criterion 3 is sharp, see [4].

4.2. Semi-effective criteria. Theorem 4 is an example of a non-effective crite-
rion of disconjugacy, i.e., a criterion formulated in terms of solutions of equa-
tion (1) rather than in terms of the coefficients of this equation.

Let us now formulate a necessary and sufficient condition of disconjugacy of
equation (1) belonging to Valle–Poussin [3]; this criterion may be called semi-
effective [11], i.e., it is effective as a necessary condition, but non-effective as
a sufficient condition. Although this criterion is not expressed in terms of the
coefficients of equation (1), it can be used to obtain sufficient conditions of
disconjugacy formulated in terms of the coefficients.

Theorem 7. Let [a, b] ⊂ I. One has L ∈ T([a, b]) if and only if there exists
function v having first derivative absolutely continuous on [a, b] and such that

(8) v(t) > 0 (a < t 6 b), Lv 6 0 a.e. on [a, b].
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Proof. Necessity follows from Theorem 4. Let us show that the conditions
of the theorem are sufficient. In the case v(a) = 0 let us put ṽ(t) = v(t) + εu(t),
where ε > 0 and u(t) is the solution of equation (1) with initial conditions
u(a) = 1, u′(a) = 0. For ε sufficiently small we have ṽ(t) > 0 on [a, b]. Hence we
may assume, without loss of generality, that v(t) > 0 on [a, b]. Let us consider

equation Mx := x′′ + px′− v′′+pv′

v
x = 0. According to Theorem 4 M ∈ T([a, b]),

since the latter equation has solution v positive on [a, b]. By our assumptions

v′′(t) + p(t)v′(t) + q(t)v(t) 6 0, i.e., − v′′(t)+p(t)v′(t)
v(t) > q(t), a.e. on [a, b]. The

statement of the theorem now follows from Theorem 2. ¤

The proof of the next statement follows the same argument.

Theorem 8. If there exists a function v having first derivative absolutely con-
tinuous on [a, b) such that v(t) > 0 (a < t < b), Lv 6 0 a.e. on (a, b), then
L ∈ T

(
[a, b)

)
.

4.3. Effective criteria. By choosing a particular ‘test’ function v, one can ob-
tain an effective criterion for disconjugacy.

Criterion 4. If q(t) 6 0 on [a, b] ⊂ I (or on (a, b) ⊂ I), then L ∈ T([a, b])
(resp., L ∈ T

(
(a, b)

)
).

Proof. We put v(t) ≡ 1 and then use Theorem 7 (resp., Theorem 8). ¤

Criterion 5. Suppose that p(t) = O(t−a) if t → a+, p(t) = O(b−t) if t → b−

(in particular, we can have p(t) ≡ 0). If π
b−a

cot π(t−a)
b−a

p(t) + q(t) 6 π2

(b−a)2 , then

L ∈ T
(
[a, b)

)
.

Proof. Let us choose v(t) ≡ sin π(t−a)
b−a

and then use Theorems 8 and 3. ¤

Criterion 6. Suppose that we have

(9) |p(t)| ·
∣∣∣
b + a

2
− t

∣∣∣ + |q(t)| ·
(b − t)(t − a)

2
6 1

or

(10)
b − a

2
essup
t∈(a,b)

|p(t)| +
(b − a)2

8
essup
t∈(a,b)

|q(t)| 6 1.

(In fact, inequality (10) implies inequality (9).) Then L ∈ T
(
[a, b)

)
.

Proof. Indeed, we take v(t) ≡ (b−t)(t−a)
2 and then refer to Theorems 3 and 8.

¤

Let P (t, λ) := λ2 + p(t)λ + q(t) be the ‘characteristic’ polynomial.

Criterion 7. If there exists ν ∈ R such that P (t, ν) 6 0 (t ∈ (−∞,+∞)),
then equation (1) is disconjugate on (−∞,+∞).
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Proof. One has v(t) := eνt > 0 and (Lv)(t) = eνtP (t, ν) 6 0 on (−∞,+∞).
The rest follows from Theorem 7. ¤

We now use Theorem 7 (Theorem 8) and a choice of a particular ‘test’ func-
tion depending on coefficients of equation (1) to obtain some new criteria for
disconjugacy.

1o. Let us consider equation

(11) L̃x := x′′ + Px′ + Qx = 0

having constant coefficients P and Q, in assumption that it is disconjugate on
[a, b). Let v be the solution of boundary value problem L̃v = −1, v(a) = v(b) = 0,

let C̃(t, s) be the Cauchy’s function of equation (11). Then C̃(t, s) > 0 (a 6 s <

t < b) and v(t) =
∫ b

a
M(t, s) ds > 0 (t ∈ (a, b)), where

M(t, s) :=





eC(b,t)· eC(s,a)
eC(b,a)

, a 6 s 6 t 6 b,

eC(t,a)· eC(b,s)
eC(b,a)

, a 6 t < s 6 b,
where (t, s) ∈ (a, b) × (a, b).

Since (Lv)(t) = −1 +
(
p(t) − P

)
v′(t) +

(
q(t) − Q

)
v(t), inequality (Lv)(t) 6 0 is

satisfied if

(12)
(
p(t) − P

) ∫ b

a

∂M(t, s)

∂t
ds +

(
q(t) − Q

) ∫ b

a

M(t, s) ds 6 1, t ∈ (a, b).

Thus, we get the following result.

Criterion 8. If inequality (12) holds, then equation (1) is disconjugate on
interval [a, b).

The special choice of coefficients P and Q can lead to criteria for disconjugacy
that are somewhat more subtle than the ones formulated above.

2o. Consider the case Q = 0. We have

M(t, s) =





(1 − e−P (b−t))(1 − e−P (s−a))

P (1 − e−P (b−a))
(s 6 t),

(1 − e−P (t−a))(1 − e−P (b−s))

P (1 − e−P (b−a))
(s > t).

From here we derive the following estimates (see details in [4])

v(t) ≤
2
(

b−a
2 − 1

P
(1 − e−P b−a

2 )
)

P (1 + e−P b−a
2 )

, |v′(t)| 6
|P (b − a) + e−P (b−a) − 1|

P (1 − e−P (b−a))
.

Since Lv 6 0 is now equivalent to
(
p(t) − P

)
v′(t) + q(t)v(t) 6 1, we get the

following criterion.
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Criterion 9. If

|p(t) − P |
|P (b − a) + e−P (b−a) − 1|

P (1 − e−P (b−a))
+ |q(t)|

2( b−a
2 − 1

P
(1 − e−P b−a

2 ))

P (1 + e−P b−a
2 ))

6 1

(a < t < b), then equation (1) is disconjugate on [a, b).

3o. If we take, instead of auxiliary equation (11), equation L̃x := x′′+p(t)x′ =

0, and take as v the solution of problem L̃v = −1, v(a) = v(b) = 0, we obtain
the following criterion.

Criterion 10. If q(t)
∫ b

a
M(t, s) ds 6 1, t ∈ (a, b), where

M(t, s) =





∫ b

t
e−

R

σ

t
p(µ) dµ dσ ·

∫ s

a
e−

R

σ

a
p(µ) dµ dσ

∫ b

a
e−

R

σ

a
p(µ) dµ dσ

(s 6 t),

∫ t

a
e−

R

σ

a
p(µ) dµ dσ ·

∫ b

s
e−

R

σ

s
p(µ) dµ dσ

∫ b

a
e−

R

σ

a
p(µ) dµ dσ

(t < s),

then equation (1) is disconjugate on [a, b).

5. ‘Geometric’ criterion for disconjugacy. 1. In what follows, we derive
a second order criterion for disconjugacy on the whole real axis R. Let us consider
a differential equation

(13) L̃x := x′′ + px′ + qx = 0

having constant coefficients p and q. As was shown before (see Criterion 1),
disconjugacy of equation (13) on R is equivalent to inequality p2 − 4q > 0.

We associate to equation (13) a point L̃ = (p, q) in the (p, q)-plane Π. Let

N := {(p, q) : p2 − 4q > 0}, O := R
2 \ N, M±(γ) := {(p, q) : q 6 −γ2 ± γp}

(γ is a non-negative parameter). Then according to Criterion 1 we have L̃ ∈

T
(
(−∞,+∞)

)
⇐⇒ L̃ ∈ N.

Let us now consider a differential equation

(14) Lx := x′′ + p(t)x′ + q(t)x = 0

with locally integrable coefficients on (−∞, +∞). Each equation of the form (14)
gives rise to a ‘curve’ GL =

{
t :

(
p(t), q(t)

)}
in plane Π (we use quotation marks

since this curve is determined up to a set of measure zero), more precisely, it
determines a motion DGL along this curve.

Now, the inclusion GL ⊂ N is neither necessary nor sufficient for the discon-

jugacy of equation (14) on R: for instance, equation x′′ − t
2x′ + t2

16x = 0, despite
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the above inclusion, possesses a solution u(t) ≡ e
t2

8 sin t
2 , which has two zeros

on each interval [2kπ, 2(k + 1)π]( k ∈ Z), i.e., this equation is not disconjugate.
At the same time, equation

x′′ + tx′ +
( t2

4
+

1

2

)
x = 0

having solution u(t) ≡ e−
t2

4 > 0 (t ∈ R), is disconjugate on R by Theorem 8,
however GL ⊂ O. The same is true for a more general equation

(15) x′′ + p(t)x′ +
(p2(t)

4
+

1

2
p′(t)

)
x = 0, p′(t) > 0, t ∈ R;

it has a solution x = e−
1

2

R

t

0
p(s) ds > 0, t ∈ R. Another example confirming that

the inclusion GL ⊂ N is neither necessary nor sufficient for disconjugacy is given
by equation

(16) x′′ +
sin t

2 + sin t
x = 0,

which is disconjugate on R by Theorem 8, but GL ∩ N 6= ∅, GL ∩ O 6= ∅.
Along with that, we have the following result.

Theorem 9. Suppose that any of the following conditions is satisfied:
(1) We have p(t) ≡ p = const, GL ⊂ N.
(2) GL ⊂ N, GL is a line or line segment.
(3) We have GL ⊂ M+(γ) (respectively, GL ⊂ M−(γ)) for a certain γ > 0.
(4) The function p is differentiable, p′(t) > 0 (p′(t) 6 0) on R, and GL ⊂ N.
(5) The function p is differentiable, p′(t) > 0 (p′(t) 6 0) on R, and

q(t) 6
p2(t)

4
+

1

2
p′(t)

(
q(t) 6

p2(t)

4
−

1

2
p′(t)

)
.

(6) Suppose that function r : R → R is continuous, function p is differentiable
and one of the following conditions is satisfied:

(17) p′(t) > 2r(t)
(
p′(t) 6 −2r(t)

)
(t ∈ R),

or

(18) p2(t) − 4p′(t) + r(t) 6 0
(
p2(t) + 4p′(t) + r(t) 6 0

)
(t ∈ R)

and q(t) 6
p2(t)

4 + r(t) (t ∈ R).
Then equation (14) is disconjugate on R.
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Proof. (1) Let us define v(t) := e−
p

2
t > 0. Then

(Lv)(t) = e−
p

2
t
(
q(t) −

1

4
p2

)
6 0 (t ∈ R).

We now apply Theorem 8 to complete the proof.
(2) The equation of such a line is either q(t) ≡ q = const 6 0 for any p(t),

or p = p(t), q = −γ2 + k p(t), where |k| 6 γ (γ > 0) (if k = ±γ then the
line is tangent to the parabola q = 1

4p2). In the first case the disconjugacy of
equation (14) on R follows from Theorem 2. In the second case the function
v(t) := e−kt > 0 (t ∈ R) satisfies condition

(Lv)(t) = e−kt(k2 − γ2) 6 0 (t ∈ R).

Theorem 8 now concludes the proof.
(3) We put v(t) := e−γt (accordingly, v(t) := eγt) and use Theorems 2 and 8.

(4) Let p′(t) > 0, L2x := x′′ + p(t)x′ + p2(t)
4 x. We put

v(t) := exp
(
−

1

2

∫ t

0

p(s) ds
)
.

Then v(t) > 0, and

(L2v)(t) = −
1

2
p′(t)e−

1

2

R

t

0
p(s) ds

6 0, t ∈ R.

It follows that equation L2x = 0 is disconjugate on R. The disconjugacy of
equation (14) now follows from Theorem 2.

If p′(t) 6 0 then we put y(t) = x(−t), thus obtaining an equation y′′−p(t)y′+
q(t)y = 0 of the form considered above.

(5) Suppose that p′(t) > 0. Then equation (15) has solution

v(t) = e−
1

2

R

t

0
p(s) ds > 0,

hence it is disconjugate on R. Again, the disconjugacy of equation (14) now
follows from Theorem 2. In the case p′(t) 6 0 we follow the same argument as
in the previous paragraph.

(6) Suppose that the first inequality (17) is satisfied. Let us consider the
differential operator

(19) L2x := x′′ + p(t)x′ +
(p2(t)

4
+ r(t)

)
x.

We put v(t) := exp
(
− 1

2

∫ t

0
p(s) ds

)
. Then v(t) > 0 and

(L2v)(t) =
(
−

1

2
p′(t) + r(t)

)
e−

1

2

R

t

0
p(s) ds

6 0, t ∈ R.
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Consequently, L2 ∈ T
(
(−∞,+∞)

)
. The disconjugacy of (14) now follows from

Theorem 2.
If the second inequality (17) holds, we put y(t) := x(−t) thus obtaining an

equation y′′ − p(t)y′ + q(t)y = 0, and a differential operator

L2y := y′′ − p(t)y′ +
(p2(t)

4
+ r(t)

)
y,

for which we put v(t) := e
1

2

R

t

0
p(s) ds. The rest of the argument is the same as

above.
Suppose that the first inequality (18) holds. We define v(t) := e−

R

t

0
p(s) ds

(> 0). Then

(L2v)(t) =
(
p2(t) −

1

2
p′(t) − p2(t) +

p2(t)

4
+ r(t)

)
e−

1

2

R

t

0
p(s) ds

6 0, t ∈ R.

Therefore, we have L2 ∈ T
(
(−∞,+∞)

)
, so it suffices to apply Theorem 2 to com-

plete the proof. In the case the second inequality (18) is satisfied, the argument
is the same as above. ¤

2. Finally, let us consider equation

(20) Lx := x′′ + p(t)x′ + q(t)x = 0 (t ∈ (a,+∞))

with coefficients continuous on (a,+∞). The substitution t → a + t2 transforms
equation (20) into equation

(21) Lx := x′′ + p(a + t2)x′ + q(a + t2)x = 0 (t ∈ (−∞,+∞)).

Now, the disconjugacy of equation (21) on R is equivalent to the disconjugacy of
equation (20) on (a,+∞). Hence, by applying the criteria for disconjugacy for
equation (14) derived in the previous sections, we obtain the respective criteria
for disconjugacy of equation (20) on (a,+∞).

3. We now apply Theorem 9 to the problem of existence of periodic solutions
of equation (14) (cf. [9]– [8]). The absence of a non-trivial periodic solution of a
linear homogeneous equation of second order is equivalent to the existence of a
unique solution to periodic boundary value problem

(Lx)(t) := x′′ + p(t)x′ + q(t)x = f(t),(22)

(p(t + T ) = p(t), q(t + T ) = q(t), f(t + T ) = f(t), T > 0),

x(a) = x(a + T ), x′(a) = x′(a + T )(23)

for all a ∈ R and any T -periodic right-hand side f .
N. N. Yuberev noticed the relationship between the existence of unique solu-

tion to the boundary value problem (22), (23), and the disconjugacy of equation
Lx = 0 on interval [a, a + T ] for any a ∈ R (see [22], [23]). The next theorem
can be easily derived from [22], [23]. We give a new proof of this result.
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Theorem 10. Let q(t) 6≡ 0, q(t) > 0 (q(t) 6 0), t ∈ R. Suppose that functions
p, q are integrable and T -periodic, and equation Lx = 0 is disconjugate on R.
Then the boundary value problem (22), (23) is uniquely solvable for any right-
hand side f or, equivalently, the homogeneous equation Lx = 0 does not have
non-trivial T -periodic solutions.

We note that the conditions of Theorem 10 are more restrictive than the
conditions of Yuberev–Tonkov–Hohryakov theorem, since the disconjugacy of
the second order linear differential equation on R implies its disconjugacy on
any interval [a, a + T ], while the converse is not true. However, the conditions
of Theorem 10 can be verified easily, which justifies these restrictions.

We note also that the condition of the constant sign for the coefficient q can
not be omitted. For instance, equation (16) having 2π-periodic coefficients is
disconjugate on R (the latter follows from Theorem 8 if we put v(t) ≡ 2+sin t > 0
(t ∈ R)), however it has a 2π-periodic solution u(t) ≡ v(t) ≡ 2 + sin t.

Proof of Theorem 10. Suppose that equation Lx = 0 has a T -periodic solu-
tion u. Then u can not have zeros due to the disconjugacy of the latter equation,
so we may assume without loss of generality that u(t) > 0 (t ∈ R). Let {tk}

∞
k=1,

0 < t1 < t2 < · · · be the sequence of points of global minima of the function u,
let m := u(tk) > 0. We note that on each interval of length T there can be only
finitely many of such points, as follows from the finiteness of the total variation of
function u (the latter is continuously differentiable). We define z(t) := u(t)−m.
Then

z(t) > 0 (t ∈ R), z(tk) = 0, k = 1, 2, . . .(24)

(Lz)(t) = (Lu)(t) − mq(t) = −mq(t) and the function z, being a solution of the
problem

(Lz)(t) = −mq(t), t ∈ [t1, tn], u(t1) = 0, u(tn) = 0(25)

has presentation

z(t) = m

∫ tn

t1

(
−Gn(t, s)

)
q(s) ds > 0 (< 0)

(
t ∈ (t1, tn)

)
,

where Gn is the Green function of problem (25). (We assume that n > 1 is
sufficiently large that between each two points t1 and tn on distinct period
intervals there exist at least one point tk ∈ (t1, tn).) As is well known (see,
e.g., [11]) Gn(t, s) < 0 for (t, s) ∈ (t1, tn)2. The inequality z(t) > 0 (z(t) < 0)
for t ∈ (t1, tn) contradicts (24). This completes the proof. ¤

Theorems 9 and 10 now give us the following result.

Corollary 3. Suppose that q(t) 6≡ 0, q(t) > 0 (q(t) 6 0), t ∈ R, where p, q
are locally integrable T -periodic functions, and equation Lx = 0 satisfies one of
conditions (1)–(6) of Theorem 9. Then the homogeneous equation Lx = 0 does
not have non-trivial T -periodic solutions.
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17. G. Polya and G. Szegö, Problems and Theorems in Analysis. Vol. 2. Springer, 2004.
18. C. A. Swanson, Comparison and Oscillation Theory for Linear Differential

Equations. Academic Press, 1967.
19. V. V. Stepanov, Course in Differential Equations. GITTL, Moscow, 1953.
20. E. L. Tonkov, The second order periodic equation. Dokl. Akad. Nauk. SSSR 184

(1969), 296–299.
21. A. Wintner, On the non-existence of conjugate points. Amer. J. Math. 73 (1951),

368–380.
22. N. N. Yuberev, A linear periodic boundary value problem for finite differences

equations (Russian). Diff. Uravnenija 6 (1966), 784–790.
23. , The preservation of the sign of the Green’s function of a periodic boundary

value problem for a second order difference equation (Russian). Diff. Uravnenija 3
(1968), 269–275.

Faculty of Mathematics, Udmurtia State University, Universitetskya St., 1 (building 4),
Izhevsk, 426034, Russia
e-mail: derr@uni.udm.ru


