Mathematical Reports - Comptes rendus mathématiques

of the Academy of Science | de l'Académie des sciences

  • Home
  • Articles
  • News
  • Editorial Board
  • General Information
    • General Information
    • Preparation of Manuscripts
    • Subscription Information
    • FAQ
    • Help

center problem — 3 results found.

      
Show all abstractsHide all abstracts

On Characterization of Universal Centers of ODEs with Analytic Coefficients
C. R. Math. Rep. Acad. Sci. Canada Vol. 35 (4) 2013, pp. 137–147
Alexander Brudnyi (Received: 2013/07/19, Revised: 2013/09/17)

Show AbstractHide Abstract

We present a solution of the problem of characterization of the universal centers of a differential equation $v’=\sum_{j=1}^n a_j v^{j+1}$ with all $a_j$ real analytic in a neighbourhood of $[a,b]\Subset\mathbb{R}$ in terms of the vanishing of finitely many moments determined by $a_1, \ldots, a_n$.

On présente la solution du problème de caractériser les centres universels d’une équation différentielle $v’=\sum_{j=1}^n a_j v^{j+1}$ dont tous les coefficients sont des fonctions analytiques réelles autour de $[a,b]\Subset\mathbb{R}$ en utilisant les ensembles des zéros d’un nombre fini des moments calculés en partant des fonctions $a_1, \ldots, a_n$

Free Subgroups of the Group of Formal Power Series and the Center Problem for ODEs
C. R. Math. Rep. Acad. Sci. Canada Vol. 31 (4) 2009, pp. 97–106
Alexander Brudnyi (Received: 2009/05/11)

Show AbstractHide Abstract

The paper belongs to the area related to the famous Poincaré center-focus problem and contains a new necessary and sufficient condition for existence of a center for ordinary differential equations with coefficients derived algebraically from a certain “basic” class. This class consists of families of equations \(\frac{dv}{dx} = \sum_{j=1}^{\infty} a_j (x) \,v^{j+1}\) whose first return maps generate free subgroups of the group of formal power series. It is shown that such families form a sufficiently “massive” subset in the set of all possible equations as above. The paper contains various characterizations of this “basic” class. It follows the lines of the author’s approach to the center-focus problem (involving modern algebraic techniques) that already deepened the understanding of the problem.

Cet article porte sur le fameux problème du centre-foyer de Poincaré et contient une nouvelle condition nécessaire et suffisante pour l’existence d’un centre pour les équations diffèrentielles ordinaires avec des coéfficients derivés algébriquement d’une certaine classe de “base”. Cette classe consiste en des familles d’équations de la forme \(\frac{dv}{dx} = \sum_{j=1}^{\infty} a_j (x) \,v^{j+1}\) dont les premières fonctions de retour engendrent des sous groupes libres d’un groupe de séries entières formelles. On démontre que de telles familles forment un sous ensemble suffisamment “massif” dans l’ensemble de toutes les équations possible ci-dessus. L’article contient des diverses caractérisations de cette classe de “base”. Il poursuit les directions de l’auteur sur le problème du centre-foyer (selon les techniques algébraiques modernes) qui ont déjà approfondies les connaissances du problème.

Center Problem for Odes with Coefficients Generating the Group of Rectangular Paths
C. R. Math. Rep. Acad. Sci. Canada Vol. 31 (2) 2009, pp. 33–44
Alexander Brudnyi (Received: 2009/02/02)

Show AbstractHide Abstract

We solve an analog of the Poincaré Center-Focus problem for the class of ordinary differential equations \(\frac{dv}{dx}=\sum_{i=1}^{\infty}a_{i}(x)\,v^{i+1}\), such that the first integrals of vectors of their coefficients determine rectangular paths in finite-dimensional complex vector spaces. In particular, we prove that all centers of such equations are universal, i.e., are determined by means of certain composition conditions. Also, we solve the Bautin problem on the number of periodic solutions with sufficiently small initial values for finite-dimensional families of such equations.

Nous résolvons l’analogue du problème du centre-foyer de Poincaré pour les équations différentielles ordinaires \(\frac{dv}{dx}=\sum_{i=1}^{\infty}a_{i}(x)\,v^{i+1}\) telles que les premières intégrales des vecteurs de leurs coefficients déterminent des chemins rectangulaires dans les espaces vectoriels complexes de dimension finie. En particulier, nous démontrons que tous les centres de telles équations sont universelles, c’est-à-dire déterminées par certaines conditions composées. De plus, nous résolvons le problème de Bautin sur le nombre de solutions périodiques ayant des valeurs initiales suffisamment petites pour les familles de dimension finie de telles équations..

 Volume / Issue

Most used Keywords

algebraic number theory approximation property automorphisms Bessel functions Boson-fermion correspondence C*-algebra Carmichael number center problem Chebyshev transform classification Classification of simple C*-algebras composition operators continued fractions Cuntz Semigroup elliptic curves fixed point Fourier transform function fields. functoriality general relativity generic property ideals indefinite inner product inductive limits of sub-homogeneous C*- algebras Irrational rotation algebra J-Hermitian matrix K-theory Kahler manifolds L-functions maximal ideal space nonexpansive mapping numerical range orthogonal polynomials Predual space prime number property SP Renormalization rotation algebras Salem number semi-reciprocal polynomials tracially approximate splitting interval algebras unbounded traces uniqueness Weak Markov set Whitney problems

Most used AMS

05C05 11A07 11A55 11B37 11B68 11D09 11D25 11D41 11E04 11F11 11F66 11F67 11G05 11R09 11R11 13B25 14J26 14M25 14P10 17B37 17B67 19K14 19K56 26A51 30C15 30H05 35B 37E10 37E20 37F25 39B72 42C05 43A07 46B20 46L05 46L35 46L40 46L55 46L80 47H10 53B25 53C55 54C60 60F10 83C05

Be notified of new issues

Copyright © 2023 · The Royal Society of Canada | La Société royale du Canada · Log in
ISSN: 2816-5810 (Online)