classification — 2 results found.
C. R. Math. Rep. Acad. Sci. Canada Vol. 31 (4) 2009, pp. 107–114
Sandro Molina-Cabrera (Received: 2009/07/20)
We show that the \(K_0\)-group of an inductive limit of recursive subhomogeneous algebras with compact metrizable spaces of dimension at most one as local spectra is torsion free. This result implies that the \(K_0\)-group of a unital simple AH algebra which is the inductive limit of recursive subhomogeneous algebras, with compact metrizable spaces of dimension at most one as local spectra, is torsion free. This proves that Li’s reduction theorem for the dimension of the local spectra of unital simple AH algebras cannot be improved, in other words, that the dimension of the local spectra of unital simple AH algebras cannot be further reduced from two to one, even when we use subhomogeneous algebras. This also shows that if a reduction theorem for the dimension of the local spectra of simple inductive limits of recursive subhomogeneous algebras exists, then, after the reduction, the local spectra of the building blocks cannot always be one dimensional.
Nous démontrons que le \(K_0\)-groupe d’une limite inductive des algèbres sous-homogènes récursives, dont les spectres locaux consistent en des espaces compacts métrisables de dimension au plus un, n’a pas de torsion. Ce résultat implique que les \(K_0\)-groupes d’une algèbre AH simple et avec l’unité qui est la limite des algèbres sous-homogènes rećursives, dont les spectres locaux consistent en des espaces compacts métrisables de dimension au plus un, n’a pas de torsion. Cela prouve que le théorème de Li de la réduction pour la dimension des spectres locaux des algèbres AH simples et avec l’unité ne peut pas être améliorée, en d’autres termes, que la dimension des spectres locaux des algèbres AH simples et avec l’unité ne peut pas encore être réduit de deux à un, même quand on utilise des algèbres sous-homogènes. Cela montre aussi que si un théorème de réduction pour la dimension des spectres locaux d’une limite inductive simple des algèbres sous-homogènes récursives existe, alors, après la réduction, les spectres locaux des blocs de construction ne peuvent pas être toujours de dimension un.
Andrew J. Dean (Received: 2004/10/06)
It is shown that two \(C^*\)-dynamical systems of the form \((K\otimes A, \mathbb{R}, \mathrm{Ad} U\otimes id)\), where \(U\) is a unitary representation of \(\mathbb{R}\) that decomposes as a finite direct sum of non-trivial irreducible representations whose multiplicities have greatest common denominator 1, and \(A\) is a simple, unital \(C^*\)-algebra with real rank zero and cancellation, are equivariantly isomorphic if, and only if, the two representations are unitarily equivalent. As a corollary, a classification result for certain inductive limit type actions of \(\mathbb{R}\) on stable UHF algebras is given.
Il est montré que deux systèmes \(C^*\)-dynamiques de la forme \((K\otimes A, \mathbb{R}, \mathrm{Ad} U\otimes id)\) où \(U\) est une representation unitaire de \(\mathbb{R}\), qui décompose comme une somme directe et finie des representations non-triviales et irréductibles dont les multiplicités ont 1 comme le dénominateur commun et le plus grand, et \(A\) est un \(C^*\)-algèbre simple, avec l’unité et avec rang réel zéro et annullation, sont isomorphe équivariantement si et seulement si les deux representations sont équivalentes unitairement. Comme un corollaire, un résultat classification pour quelques actions du type de la limite inductive de \(\mathbb{R}\) sur les algèbres d’UHF stables est aussi donné.
