cycles of quadratic forms — 1 results found.
C. R. Math. Rep. Acad. Sci. Canada Vol. 32 (2) 2010, pp. 40–51
Ahmet Tekcan; Arzu Ozkoc; Hatice Alkan (Received: 2009/11/11, Revised: 2010/02/02)

Mathematical Reports - Comptes rendus mathématiques
of the Academy of Science | de l'Académie des sciences
Let \(k\geq 2\) be an integer and let \(D = k^2+k+1\) be a positive non-square integer. In this work, we derive some properties (including cycles) of ideals \(I_1 = [k,k-1+\sqrt{D}]\), \(I_2 = [k+1,k+\sqrt{D}]\) and their product \(I\). In the last section, we consider the indefinite binary quadratic forms \(F_{I_1}\), \(F_{I_2}\) and \(F_I\) of discriminant \(\Delta=4D\) which correspond to \(I_1\), \(I_2\) and \(I\), respectively and we formulate the cycle of \(F_{I_1}\) and \(F_{I_2}\).
Soit \(k\ge 2\) un entier tel que \(D = k^2+k+1\) ne soit pas le carré d’un entier. Dans ce travail, on obtient quelques propriétés (incluant des cycles) des idéaux \(I_1 = [k,k-1+\sqrt{D}]\), \(I_2 = [k+1,k+\sqrt{D}]\) et de leur produit \(I\). Dans le dernier paragraphe, on considère les formes quadratiques binaires indéfinies \(F_{I_1}\), \(F_{I_2}\) et \(F_I\) de discriminant \(\Delta=4D\) qui correspondent respectivement aux idéaux \(I_1\), \(I_2\) et \(I\) à fin de formuler le cycle de \(F_{I_1}\) et \(F_{I_2}\).