Mathematical Reports - Comptes rendus mathématiques

of the Academy of Science | de l'Académie des sciences

  • Home
  • Articles
  • News
  • Editorial Board
  • General Information
    • General Information
    • Preparation of Manuscripts
    • Subscription Information
    • FAQ
    • Help

Finiteness Principle — 1 results found.

      
Show all abstractsHide all abstracts

On Properties of Geometric Preduals of ${\mathbf C^{k,\omega}}$ Spaces
C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (4) 2017, pp. 133-141
Alexander Brudnyi (Received: 2017/07/13, Revised: 2017/07/14)

[+ show]Hide Abstract

Let \(C_b^{k,\omega}({\mathbb R}^n)\) be the Banach space of \(C^k\) functions on \({\mathbb R}^n\) bounded together with all derivatives of order \(\le k\) and with derivatives of order \(k\) having moduli of continuity majorated by \(c\cdot\omega\), \(c\in{\mathbb R}_+\), for some \(\omega\in C({\mathbb R}_+)\). Let \(C_b^{k,\omega}(S):=C_b^{k,\omega}({\mathbb R}^n)|_S\) be the trace space to a closed subset \(S\subset{\mathbb R}^n\). The geometric predual \(G_b^{k,\omega}(S)\) of \(C_b^{k,\omega}(S)\) is the minimal closed subspace of the dual \(\bigl(C_b^{k,\omega}({\mathbb R}^n)\bigr)^*\) containing evaluation functionals of points in \(S\). We study geometric properties of spaces \(G_b^{k,\omega}(S)\) and their relations to the classical Whitney problems on the characterization of trace spaces of \(C^k\) functions on \({\mathbb R}^n\).

Soit \(C_b^{k, \omega} ({\mathbb R}^n)\) l’espace de Banach des fonctions \(C^k\) sur \({\mathbb R}^n\) bornées avec toutes leurs dérivées d’ordre jusqu’à \(k\) et avec les dérivées d’ordre \(k\) ayant des modules de continuité majorés par \(c \cdot \omega\), \(c \in {\mathbb R}_+\), pour quelque \(\omega \in C ({\mathbb R}_+)\). Soit \(C_b ^ {k, \omega} (S): = C_b^{k, \omega} ({\mathbb R}^n) |_S\) l’espace de trace à un fermé \(S\subset{\mathbb R} ^ n\). Le predual géométrique \(G_b^{k, \omega}(S)\) de \(C_b^{k, \omega} (S)\) est le sous-espace minimal fermé du dual \(\bigl (C_b^ {k, \omega} ({\mathbb R}^n) \bigr)^*\) contenant les fonctionnelles d’évaluation aux points de \(S\). Nous étudions les propriétés géométriques des espaces \(G_b^{k, \omega} (S)\) et leur relation avec les problèmes classiques de Whitney sur la caractérisation des espaces de trace des fonctions \(C^k\) sur \({\mathbb R}^n\).

 Volume / Issue

Most used Keywords

algebraic number theory approximation property automorphisms Bessel functions Boson-fermion correspondence C*-algebra Carmichael number center problem Chebyshev transform classification Classification of simple C*-algebras composition operators continued fractions Cuntz Semigroup elliptic curves fixed point Fourier transform function fields. functoriality general relativity generic property ideals indefinite inner product inductive limits of sub-homogeneous C*- algebras Irrational rotation algebra J-Hermitian matrix K-theory Kahler manifolds L-functions maximal ideal space nonexpansive mapping numerical range orthogonal polynomials Predual space prime number property SP Renormalization rotation algebras Salem number semi-reciprocal polynomials tracially approximate splitting interval algebras unbounded traces uniqueness Weak Markov set Whitney problems

Most used AMS

05C05 11A07 11A55 11B37 11B68 11D09 11D25 11D41 11E04 11F11 11F66 11F67 11G05 11R09 11R11 13B25 14J26 14M25 14P10 17B37 17B67 19K14 19K56 26A51 30C15 30H05 35B 37E10 37E20 37F25 39B72 42C05 43A07 46B20 46L05 46L35 46L40 46L55 46L80 47H10 53B25 53C55 54C60 60F10 83C05

Be notified of new issues

Copyright © 2023 · The Royal Society of Canada | La Société royale du Canada · Log in
ISSN: 2816-5810 (Online)