index finite type — 1 results found.
C. R. Math. Rep. Acad. Sci. Canada Vol. 35 (3) 2013, pp. 77–113
R. Exel (Received: 2012/05/09, Revised: 2013/07/24)

Mathematical Reports - Comptes rendus mathématiques
of the Academy of Science | de l'Académie des sciences
Given two algebras $A$ and $B$, sometimes assumed to be C\*-algebras, we consider the question of putting algebra or C\*-algebra structures on the tensor product $A\otimes B$. In the C\*-case, assuming $B$ to be two-dimensonal, we characterize all possible such C\*-algebra structures in terms of an action of the cyclic group ${\mathbb Z}_2$. An example related to commuting squares is also discussed.
Si $A$ et $B$ sont deux algèbres (resp. deux C\*-algèbres), nous étudions dans cette note les structures possibles d’algèbre (resp. de C\*-algèbre) qui peuvent être définies sur le produit tensoriel $A\otimes B$. Si $A$ est une C\*-algèbre, nous caractérisons toutes les structures de C\*-algèbre sur le produit tensoriel $A\otimes \mathbb{C}^2$ par une action du groupe cyclique $\mathbb{Z}_2$. Nous présentons aussi un exemple associé aux carrés commutatifs.