Mathematical Reports - Comptes rendus mathématiques

of the Academy of Science | de l'Académie des sciences

  • Home
  • Articles
  • News
  • Editorial Board
  • General Information
    • General Information
    • Preparation of Manuscripts
    • Subscription Information
    • FAQ
    • Help

matrix families — 1 results found.

      
Show all abstractsHide all abstracts

Group Actions on Filtered Modules and Finite Determinacy. Finding Large Submodules in the Orbit by Linearization
C. R. Math. Rep. Acad. Sci. Canada Vol. 38 (4) 2016, pp. 113-155
Genrich Belitskii; Dmitry Kerner (Received: 2015/07/20, Revised: 2016/01/27)

[+ show]Hide Abstract

Let \(M\) be a module over a local ring \(R\) and a group action \(G\circlearrowright M\), not necessarily \(R\)-linear. To understand how large is the \(G\)-orbit of an element \(z\in M\) one looks for the large submodules of \(M\) lying in \(Gz\). We provide the corresponding (necessary/sufficient) conditions in terms of the tangent space to the orbit, \(T_{(Gz,z)}\).

This question originates from the classical finite determinacy problem of Singularity Theory. Our treatment is rather general, in particular we extend the classical criteria of Mather (and many others) to a broad class of rings, modules and group actions.

When a particular ‘deformation space’ is prescribed, \(\Sigma\subseteq M\), the determinacy question is translated into the properties of the tangent spaces, \(T_{(Gz,z)}\), \(T_{(\Sigma,z)}\), and in particular to the annihilator of their quotient, \(ann\,{T_{(\Sigma,z)}}/{T_{(Gz,z)}}\).

Etant donné une action d’un groupe sur un module, \(G\circlearrowright M\), et un élément \(z\in M\), on étudie le plus grand sous-module de \(M\) contenu dans l’orbite \(Gz\). On donne des conditions nécessaires et suffisantes décrivant ce module en termes de l’espace tangent a l’orbite, \(T_{(Gz,z)}\). Cela prolonge les critères classiques de la théorie des singularités à une large classe d’anneaux, modules, et actions de groupes.

 Volume / Issue

Most used Keywords

algebraic number theory approximation property automorphisms Bessel functions Boson-fermion correspondence C*-algebra Carmichael number center problem Chebyshev transform classification Classification of simple C*-algebras composition operators continued fractions Cuntz Semigroup elliptic curves fixed point Fourier transform function fields. functoriality general relativity generic property ideals indefinite inner product inductive limits of sub-homogeneous C*- algebras Irrational rotation algebra J-Hermitian matrix K-theory Kahler manifolds L-functions maximal ideal space nonexpansive mapping numerical range orthogonal polynomials Predual space prime number property SP Renormalization rotation algebras Salem number semi-reciprocal polynomials tracially approximate splitting interval algebras unbounded traces uniqueness Weak Markov set Whitney problems

Most used AMS

05C05 11A07 11A55 11B37 11B68 11D09 11D25 11D41 11E04 11F11 11F66 11F67 11G05 11R09 11R11 13B25 14J26 14M25 14P10 17B37 17B67 19K14 19K56 26A51 30C15 30H05 35B 37E10 37E20 37F25 39B72 42C05 43A07 46B20 46L05 46L35 46L40 46L55 46L80 47H10 53B25 53C55 54C60 60F10 83C05

Be notified of new issues

Copyright © 2023 · The Royal Society of Canada | La Société royale du Canada · Log in
ISSN: 2816-5810 (Online)