unitary operators — 1 results found.
C. R. Math. Rep. Acad. Sci. Canada Vol. 37 (4) 2015, pp. 121-130
Sam Walters (Received: 2014/10/10, Revised: 2014/10/10)

Mathematical Reports - Comptes rendus mathématiques
of the Academy of Science | de l'Académie des sciences
We prove that for locally compact, compactly generated self-dual Abelian groups \(G\), there are canonical unitary integral operators on \(L^2(G)\) analogous to the Fourier transform but which have orders 3 and 6. To do this, we establish the existence of a certain projective character on \(G\) whose phase multiplication with the FT gives rise to the Cubic transform (of order 3). (Thus, although the Fourier transform has order 4, one can “make it” have order 3 (or 6) by means of a phase factor!)
Soit \(G\) un groupe localement compact, engendré par un sousensemble compact, et isomorphe à son groupe dual. On construit des operateurs intégrals unitaires canoniques qui sont analogues à la transformée de Fourier, mais qui sont d’ordres trois et six.