Mathematical Reports - Comptes rendus mathématiques

of the Academy of Science | de l'Académie des sciences

  • Home
  • Articles
  • News
  • Editorial Board
  • General Information
    • General Information
    • Preparation of Manuscripts
    • Subscription Information
    • FAQ
    • Help
 

Vol.29 (4) 2007 — 3 results found.

Show all abstractsHide all abstracts

The Range of the Orbit Operator and Invariant Subspaces
C. R. Math. Rep. Acad. Sci. Canada Vol. 29 (4) 2007, pp. 123–127
Robin J. Deeley (Received: 2008/03/12)

Show AbstractHide Abstract

To a bounded linear operator and a vector in the Hilbert space on which it acts we associate a linear map which we call the orbit operator. We prove a number of results linking properties of the range of the orbit operator to the existence of invariant subspaces of the original operator.

On associe à un opérateur \(T\) et un vecteur \(x\) dans un espace de Hilbert, un opérateur “d’orbite” \(\mathcal{O}_T^{e_i}(x)\), et on démontre des résultats reliant les propriétés de l’image de \(O^{e_i}_T(x)\) et des sous-espaces invariants de \(T\).

Cauchy Type Integrals and a $D$-Moment Problem
C. R. Math. Rep. Acad. Sci. Canada Vol. 29 (4) 2007, pp. 115–122
V.A. Kisunko (Received: 2007/03/10, Revised: 2008/04/17)

Show AbstractHide Abstract

We consider a Cauchy-type integral \(F(z)= \int_{\Gamma} \frac {g(\xi)\,\d \xi}{\xi-z}\), where \(g\) is a piecewise analytic function satisfying an \(n\)-th order linear homogeneous differential equation \(Ly=\frac{\d^n y}{\d z^n} + c_{n-1}\frac{\d^{n-1}}{\d z^{n-1}} +\dots+ c_0y=0\) with coefficients \(c_k \in \C(z)\) rational functions. Our main theorem asserts that the function \(F\) satisfies a linear non-homogeneous equation \(Ly=R\) with \(R\) a rational function. The precise description of \(R\) leads to the solution of a vanishing problem and to the solution of a moment-type problem, which we call D-moment problem.

On considère une integrale du type Cauchy \(F(z)= \int_{\Gamma} \frac {g(\xi)\d \xi}{\xi-z}\), où \(g\) est une fonction analytique par morceaux satisfaisant une équation différentielle linéaire homogène d’ordre \(n\), \(Ly=\frac{\d^n y}{\d z^n} + c_{n-1}\frac{\d^{n-1}}{\d z^{n-1}} +\dots+ c_0y=0\), aux coefficients \(c_k\in \C(z)\) rationnels. Notre théorème principal affirme que la fonction \(F\) satisfait une équation linéaire non-homogène \(Ly=R\) avec \(R\) rationnelle. La description précise de \(R\) mène à la solution du problème d’évanescence et à la solution d’un problème du type moment que nous appelons problème de D-moment.

Signal Acquisition from Measurements via Non-Linear Models
C. R. Math. Rep. Acad. Sci. Canada Vol. 29 (4) 2007, pp. 97–114
N. Sarig; Y. Yomdin (Received: 2008/02/23)

Show AbstractHide Abstract

We consider the problem of reconstruction of a non-linear finite-parametric model \(M=M_p(x)\) with \(p=(p_1,\dots,p_r)\) a set of parameters, from a set of measurements \(m_j(M)\). In this paper \(m_j(M)\) are always the moments \(m_j(M)=\int x^jM_p(x)\,dx\). This problem is a central one in signal processing, statistics, and in many other applications.

We concentrate on a direct (and somewhat “naive“) approach to the above problem: we simply substitute the model function \(M_p(x)\) into the measurements \(m_j\) and compute explicitly the resulting “symbolic” expressions of \(m_j(M_p)\) in terms of the parameters \(p\). Equating these “symbolic" expressions to the actual measurement results, we produce a system of nonlinear equations in the parameters \(p\), which we then try to solve.

The aim of this paper is to review some recent results in this direction, stressing the algebraic structure of the arising systems and mathematical tools required for their solution.

In particular, we discuss the relation of the reconstruction problem above with recent results on the vanishing problem for generalized polynomial moments and on the Cauchy-type integrals of algebraic functions.

Nous étudions le problème de reconstruction d’un modèle non-linéaire parametrisé \(M=M_p(x)\), aux paramètres \(p=(p_1,\dots,p_r)\), à partir d’un ensemble de mesures \(m_j(M)\). Dans cet article les \(m_j(M)\) sont des moments \(m_j(M)=\int x^j M_p(x) \,dx\). Ce problème est central dans le traitement du signal, dans les statistiques et dans bien d’autres domaines.

Nous nous concentrons sur une approche directe (et un peu “naîve“) du problème décrit ci-dessus: nous substituons simplement la fonction modèle \(M_p(x)\) dans les mesures \(m_j\) et calculons explicitement l’expression symbolique résultant de \(m_j(M_p)\) en fonction des paramètres \(p\). En comparant ces expressions “symboliques” aux vraix valeurs des mesures, nous produisons un système d’équations non-linéaires en \(p\), que nous essayons de résoudre.

Le but de cet article est d’examiner des résultats récents qui vont dans cette direction, tout en insistant sur la structure algébrique des systèmes qui interviennent et des outils mathématiques nécessaires pour leur solution.

En particulier nous discuterons la relation du problème de reconstruction décrit ci-dessus aux résultats récents sur le problème des zéros des moments polynomiaux généralisés et sur les intégrales du type Cauchy des fonctions algébriques.

 Volume / Issue

Most used Keywords

algebraic number theory approximation property automorphisms Bessel functions Boson-fermion correspondence C*-algebra Carmichael number center problem Chebyshev transform classification Classification of simple C*-algebras composition operators continued fractions Cuntz Semigroup elliptic curves fixed point Fourier transform function fields. functoriality general relativity generic property ideals indefinite inner product inductive limits of sub-homogeneous C*- algebras Irrational rotation algebra J-Hermitian matrix K-theory Kahler manifolds L-functions maximal ideal space nonexpansive mapping numerical range orthogonal polynomials Predual space prime number property SP Renormalization rotation algebras Salem number semi-reciprocal polynomials tracially approximate splitting interval algebras unbounded traces uniqueness Weak Markov set Whitney problems

Most used AMS

05C05 11A07 11A55 11B37 11B68 11D09 11D25 11D41 11E04 11F11 11F66 11F67 11G05 11R09 11R11 13B25 14J26 14M25 14P10 17B37 17B67 19K14 19K56 26A51 30C15 30H05 35B 37E10 37E20 37F25 39B72 42C05 43A07 46B20 46L05 46L35 46L40 46L55 46L80 47H10 53B25 53C55 54C60 60F10 83C05

Be notified of new issues

Copyright © 2023 · The Royal Society of Canada | La Société royale du Canada · Log in
ISSN: 2816-5810 (Online)