Mathematical Reports - Comptes rendus mathématiques

of the Academy of Science | de l'Académie des sciences

  • Home
  • Articles
  • News
  • Editorial Board
  • General Information
    • Preparation of Manuscripts
    • Subscription Information
    • FAQ
    • Help
 

Vol.32 (3) 2010 — 2 results found.

Show all abstractsHide all abstracts

Geometric Theory of Parshin Residues
C. R. Math. Rep. Acad. Sci. Canada Vol. 32 (3) 2010, pp. 81–96
Mikhail Mazin (Received: 2009/10/09)

Show AbstractHide Abstract

This is a brief summary of results. More detailed papers are in preparation. Preliminary versions of the detailed papers are available on the arxiv.org. We study the theory of Parshin residues from the geometric point of view. In particular, the residue is expressed in terms of an integral over a smooth cycle. The Parshin–Lomadze Reciprocity Law for residues in complex case is proved via a homological relation on these cycles.

The paper consist of two parts. In the first part the theory of Leray coboundary operators for stratified spaces is developed. These operators are used to construct the cycle and prove the homological relation. In the second part resolution of singularities techniques are applied to study local geometry near a complete flag of subvarieties. We give a short introduction to the theory of Parshin residues in the Introduction.

All the constructions are valid both in complex algebraic and complex analytic cases. However, for simplicity of presentation we restrict ourselves to the algebraic case.

Ceci est un bref résumé de résultats. Des articles plus détaillés sont en préparation. Des versions préliminaires de ces articles sont disponibles sur arxiv.org. Nous étudions la théorie des résidus de Parshin d’un point de vue géométrique. En particulier, le résidu est exprimé sous la forme d’une intégrale sur un cycle lisse, et la Loi de Réciprocité de Parshin–Lomadze pour les résidus dans le cas complexe est démontrée par l’intermédiaire d’une relation homologique sur ces cycles. Cet article comporte deux parties. Dans la première la théorie des opérateurs de cobords pour espaces stratifiés est développée et est utilisée pour construire le cycle et démontrer la relation d’homologie. Dans la seconde partie, les techniques de résolution de singularités sont utilisées pour étudier la géométrie locale près d’un drapeau complet de sous-variétés. Nous donnons une courte introduction à la théorie des résidus de Parshin dans l’introduction. Toutes les constructions sont valables dans le cas algébrique complexe et dans le cas analytique complexe. Cependant pour la simplicité de l’exposé on s’est restreint au cas algébrique.

Holomorphic Almost Periodic Functions on Coverings of Stein Manifolds
C. R. Math. Rep. Acad. Sci. Canada Vol. 32 (3) 2010, pp. 65–80
Alexander Brudnyi; Damir Kinzebulatov (Received: 2010/03/04, Revised: 2010/04/13)

Show AbstractHide Abstract

In this paper we introduce and study algebras of holomorphic almost periodic functions on regular coverings of Stein manifolds. These functions embrace two famous theories: Bohr’s holomorphic almost periodic functions on tube domains and von~Neumann’s almost periodic functions on groups. For such algebras we obtain results on approximation by analogs of exponential polynomials, on holomorphic extension from almost periodic complex submanifolds and describe the structure of their maximal ideal spaces.

Dans cet article on introduit et étudie des algèbres de fonctions holomorphes presque périodiques sur des revêtements reguliers des variétés de Stein. Ces fonctions unifient deux célèbres théories: les fonctions holomorphes presque périodiques sur des domaines tubulaires (d’après Bohr) et des fonctions presque périodiques sur des groupes (d’après von Neumann). Pour ces algèbres on obtient des résultats sur l’approxima\-tion par des analogues des polynômes exponentiels et sur le prolongement holomorphe des sous-variétés presque périodiques complexes. On décrit aussi la structure de leurs espaces des idéaux maximaux.

 Volume / Issue

Most used Keywords

algebraic number theory approximation property automorphisms Bessel functions Boson-fermion correspondence C*-algebra Carmichael number center problem Chebyshev transform Classification of simple C*-algebras composition operators continued fractions Cuntz Semigroup cycles of ideals elliptic curves fixed point Fourier transform function fields. general relativity generic property ideals indefinite inner product inductive limits of sub-homogeneous C*- algebras Irrational rotation algebra J-Hermitian matrix K-theory Kahler manifolds L-functions maximal ideal space nonexpansive mapping noninterlacing numerical range orthogonal polynomials Predual space prime number property SP quadratic forms Renormalization rotation algebras Salem number semi-reciprocal polynomials tracially approximate splitting interval algebras unbounded traces Weak Markov set Whitney problems

Most used AMS

05C05 11A07 11A55 11B37 11B68 11D09 11D25 11D41 11E04 11F67 11G05 11R09 11R11 13B25 14J26 14M25 14P10 17B37 17B67 19K56 26A51 30C15 30H05 35B 37E10 37E20 37F20 37F25 39B72 42C05 43A07 43A62 46B20 46L05 46L35 46L40 46L55 46L80 47H10 53B25 53C55 54C60 60F10 60J75 83C05

Be notified of new issues

Copyright © 2021 · The Royal Society of Canada | La Société royale du Canada · Log in