Mathematical Reports - Comptes rendus mathématiques

of the Academy of Science | de l'Académie des sciences

  • Home
  • Articles
  • News
  • Editorial Board
  • General Information
    • General Information
    • Preparation of Manuscripts
    • Subscription Information
    • FAQ
    • Help
 

Vol.33 (2011) — 14 results found.

Show all abstractsHide all abstracts

Higher derivations and Hochschild homology
C. R. Math. Rep. Acad. Sci. Canada Vol. 33 (2) 2011, pp. 33–43
A. Banerjee (Received: 2010/10/25, Revised: 2010/11/29)

Show AbstractHide Abstract

Let \(K\) be a commutative ring and let \(A\) be a \(K\)-algebra. A \(K\)-linear derivation \(D\) on \(A\) induces a morphism \(L_D\) on the Hochschild and cyclic homologies of \(A\), which is the analogue of the Lie derivative in noncommutative geometry. In this paper, we extend this to higher (or Hasse–Schmidt) derivations on \(A\).

Soit \(K\) un anneau commutatif et soit \(A\) une \(K\)-algèbre. Une dérivation \(K\)-linéaire \(D\) de \(A\) induit un endomorphisme \(L_D\) de l’homologie de Hochschild et de l’homologie cyclique de \(A\), qui est l’analogue en géométrie non-commutative de la dérivée de Lie. Dans cet article, nous généralisons cette construction aux dérivations d’ordre supérieur (ou dérivations de Hasse–Schmidt) de \(A\).

Explicit proof of Poincaré inequality for differential forms on manifolds
C. R. Math. Rep. Acad. Sci. Canada Vol. 33 (1) 2011, pp. 21–32
Leonid Shartser (Received: 2010/05/28)

Show AbstractHide Abstract

We prove a Poincaré type inequality for differential forms on compact manifolds by means of a constructive ‘globalization’ of a local Poincaré inequality on convex sets.

On prouve une inégalité de Poincaré pour les formes différentielles sur les variétés compactes à l’aide d’une ‘globalisation’ constructive d’une inégalité de Poincaré locale pour les ensembles convexes.

Dimension groups and multidimensional continued fractions
C. R. Math. Rep. Acad. Sci. Canada Vol. 33 (1) 2011, pp. 11–20
Gregory R. Maloney (Received: 2009/12/13, Revised: 2010/02/17)

Show AbstractHide Abstract

We describe a class of dimension groups associated with multidimensional continued fractions and show how a certain property of a continued fraction is reflected in the structure of its dimension group.

On décrit une classe de groupes de dimensions associés aux fractions continues multidimensionnelles et on montre comment une certaine propriété d’une fraction continue se reflète dans la structure de son groupe de dimensions.

Exact sequences for equivariantly formal spaces
C. R. Math. Rep. Acad. Sci. Canada Vol. 33 (1) 2011, pp. 1–10
Matthias Franz; Volker Puppe (Received: 2010/03/03, Revised: 2010/05/05)

Show AbstractHide Abstract

Let \(T\) be a torus. We present an exact sequence relating the relative equivariant cohomologies of the skeletons of an equivariantly formal \(T\)-space. This sequence, which goes back to Atiyah and Bredon, generalizes the so-called Chang–Skjelbred lemma. As coefficients, we allow prime fields and subrings of the rationals, including the integers. We extend to the same coefficients a generalization of this “Atiyah–Bredon sequence” for actions without fixed points which has recently been obtained by Goertsches.

Soit \(T\) un tore et soit \(X\) un \(T\)-espace dont la cohomologie équivariante est libre sur \(H^*(BT)\). Nous construisons une suite exacte liant les cohomologies relatives equivariantes des squelettes de \(X\), et dont les coefficients sont à valeurs dans un corps premier ou dans un sous-anneau des nombres rationnels, y compris l’anneau des entiers. Cette suite, qui remonte à Atiyah et Bredon, généralise le lemme de Chang–Skjelbred. Goertsches et Töben ont récemment démontré qu’une modification de cette suite “d’Atiyah–Bredon” à coefficients réels est exacte dans le cas plus général d’une action sans points fixes. Nous montrons que ceci reste vrai pour les coefficients mentionnés ci-dessus.

  • « Previous Page
  • 1
  • 2

 Volume / Issue

Most used Keywords

algebraic number theory approximation property automorphisms Bessel functions Boson-fermion correspondence C*-algebra Carmichael number center problem Chebyshev transform Classification of simple C*-algebras composition operators continued fractions Cuntz Semigroup cycles of ideals elliptic curves fixed point Fourier transform function fields. general relativity generic property ideals indefinite inner product inductive limits of sub-homogeneous C*- algebras Irrational rotation algebra J-Hermitian matrix K-theory Kahler manifolds L-functions maximal ideal space nonexpansive mapping noninterlacing numerical range orthogonal polynomials Predual space prime number property SP quadratic forms Renormalization rotation algebras Salem number semi-reciprocal polynomials tracially approximate splitting interval algebras unbounded traces Weak Markov set Whitney problems

Most used AMS

05C05 11A07 11A55 11B37 11B68 11D09 11D25 11D41 11E04 11F67 11G05 11R09 11R11 13B25 14J26 14M25 14P10 17B37 17B67 19K56 26A51 30C15 30H05 35B 37E10 37E20 37F20 37F25 39B72 42C05 43A07 43A62 46B20 46L05 46L35 46L40 46L55 46L80 47H10 53B25 53C55 54C60 60F10 60J75 83C05

Be notified of new issues

Copyright © 2021 · The Royal Society of Canada | La Société royale du Canada · Log in