Mathematical Reports - Comptes rendus mathématiques

of the Academy of Science | de l'Académie des sciences

  • Home
  • Articles
  • News
  • Editorial Board
  • General Information
    • General Information
    • Preparation of Manuscripts
    • Subscription Information
    • FAQ
    • Help
 

Vol.39 (2017) — 12 results found.

Show all abstractsHide all abstracts

The Structure of Deitmar Schemes, II. Zeta Functions and Automorphism Groups
C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (4) 2017, pp. 142-152
Manuel Mérida-Angulo; Koen Thas (Received: 2017/08/01, Revised: 2017/09/01)

[+ show]Hide Abstract

We provide a coherent overview of a number of recent results obtained by the authors in the theory of schemes defined over the field with one element. Essentially, this theory encompasses the study of a functor which maps certain geometries including graphs to Deitmar constructible sets with additional structure, as such introducing a new zeta function for graphs. The functor is then used to determine the automorphism groups of the Deitmar constructible sets and their base extensions to fields.

Nous donnons une vue d’ensemble d’une nombre de résultats récents qui ont été obtenus par les auteurs dans le domaine de la théorie des schémas sur le corps à un élément. Principalement, cette théorie concerne l’étude d’un foncteur qui envoie certaines géométries (y compris les graphes) sur un ensemble constructible de Deitmar avec une structure additionnelle. De cette manière on introduit aussi une nouvelle fonction zeta pour les graphes. Le foncteur est ensuite utilisé pour déterminer les groupes d’automorphismes des ensembles constructibles de Deitmar et de ceux obtenus après une extension de base à d’autres corps.

On Properties of Geometric Preduals of ${\mathbf C^{k,\omega}}$ Spaces
C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (4) 2017, pp. 133-141
Alexander Brudnyi (Received: 2017/07/13, Revised: 2017/07/14)

[+ show]Hide Abstract

Let \(C_b^{k,\omega}({\mathbb R}^n)\) be the Banach space of \(C^k\) functions on \({\mathbb R}^n\) bounded together with all derivatives of order \(\le k\) and with derivatives of order \(k\) having moduli of continuity majorated by \(c\cdot\omega\), \(c\in{\mathbb R}_+\), for some \(\omega\in C({\mathbb R}_+)\). Let \(C_b^{k,\omega}(S):=C_b^{k,\omega}({\mathbb R}^n)|_S\) be the trace space to a closed subset \(S\subset{\mathbb R}^n\). The geometric predual \(G_b^{k,\omega}(S)\) of \(C_b^{k,\omega}(S)\) is the minimal closed subspace of the dual \(\bigl(C_b^{k,\omega}({\mathbb R}^n)\bigr)^*\) containing evaluation functionals of points in \(S\). We study geometric properties of spaces \(G_b^{k,\omega}(S)\) and their relations to the classical Whitney problems on the characterization of trace spaces of \(C^k\) functions on \({\mathbb R}^n\).

Soit \(C_b^{k, \omega} ({\mathbb R}^n)\) l’espace de Banach des fonctions \(C^k\) sur \({\mathbb R}^n\) bornées avec toutes leurs dérivées d’ordre jusqu’à \(k\) et avec les dérivées d’ordre \(k\) ayant des modules de continuité majorés par \(c \cdot \omega\), \(c \in {\mathbb R}_+\), pour quelque \(\omega \in C ({\mathbb R}_+)\). Soit \(C_b ^ {k, \omega} (S): = C_b^{k, \omega} ({\mathbb R}^n) |_S\) l’espace de trace à un fermé \(S\subset{\mathbb R} ^ n\). Le predual géométrique \(G_b^{k, \omega}(S)\) de \(C_b^{k, \omega} (S)\) est le sous-espace minimal fermé du dual \(\bigl (C_b^ {k, \omega} ({\mathbb R}^n) \bigr)^*\) contenant les fonctionnelles d’évaluation aux points de \(S\). Nous étudions les propriétés géométriques des espaces \(G_b^{k, \omega} (S)\) et leur relation avec les problèmes classiques de Whitney sur la caractérisation des espaces de trace des fonctions \(C^k\) sur \({\mathbb R}^n\).

Grauert and Ramspott Type Theorems on the Maximal Ideal Space of ${\mathbf H^\infty}$
C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (4) 2017, pp. 116-132
Alexander Brudnyi (Received: 2017/07/03, Revised: 2017/07/06)

[+ show]Hide Abstract

The classical Grauert and Ramspott theorems constitute the foundation of the Oka principle on Stein spaces. In this paper we establish analogous results on the maximal ideal space \(M(H^\infty)\) of the Banach algebra \(H^\infty\) of bounded holomorphic functions on the open unit disk \({\mathbb D}\subset{\mathbb C}\). We illustrate our results by some examples and applications to the theory of operator-valued \(H^\infty\) functions.

Les théorèmes classiques de Grauert et Ramspott constituent la base du principe d’Oka par rapport aux espaces Stein. Dans cet article, nous démontrons des résultats analogues sur l’espace idéal maximal \(M(H^\infty)\) de l’algèbre de Banach \(H^\infty\) des fonctions holomorphes bornées sur une disque d’unité ouverte \({\mathbb D} \subset{\mathbb C}\). Nous présentons nos résultats avec des exemples et des applications à la théorie des fonctions \(H^\infty\) évaluées par l’opérateur.

Tilings Defined by Root Systems of Kac-Moody Algebras
C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (3) 2017, pp. 103-115
Yuan Yao (Received: 2017/06/06, Revised: 2017/06/07)

[+ show]Hide Abstract

For root systems of symmetrizable Kac-Moody algebras, we study a tiling of the positive root cone of the form \(\bigcup_{w\in W} (1-w) C ^+\), where \(W\) is the Weyl group and \(C^+\) is the fundamental chamber. We show for general symmetrizable Kac-Moody algebras the tiles are disjoint, and the gaps between top dimensional tiles have codimension \(\geq2\). For affine Kac-Moody algebras we completely describe the closure \(\bigcup_{w\in W} \overline{(1-w) C ^+}\).

Pour les systèmes des racines d’algèbres de Kac-Moody symétriques, nous étudions un carrelage du cône des racines positifs de la forme \(\bigcup_{w\in W} (1-w) C ^+\), où \(W\) est le groupe de Weyl et \( C^+ \) est la chambre fondamentale. Nous montrons que les carreaux sont disjoints pour les algèbres de Kac-Moody symétriques, et les lacunes entre les carreaux de dimension supérieure ont codimension \(\geq 2\). Pour les algèbres de Kac-Moody affines, nous décrivons complètement \(\bigcup_{w\in W} \overline{(1-w) C ^+}\).

Discrete Invariants of Generically Inconsistent Systems of Laurent Polynomials
C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (3) 2017, pp. 90-102
Leonid Monin (Received: 2017/03/17, Revised: 2017/04/17)

Show AbstractHide Abstract

Let \( \mathcal{A}_1, \ldots, \mathcal{A}_k \) be finite sets in \( \mathbb{Z}^n \) and let \( Y \subset (\mathbb{C}^*)^n \) be an algebraic variety defined by a system of equations \[f_1 = \ldots = f_k = 0,\] where \( f_1, \ldots, f_k \) are Laurent polynomials with supports in \(\mathcal{A}_1, \ldots, \mathcal{A}_k\). Assuming that \( f_1, \ldots, f_k \) are sufficiently generic, the Newton polyhedron theory computes discrete invariants of \( Y \) in terms of the Newton polyhedra of \( f_1, \ldots, f_k \). It may appear that the generic system with fixed supports \( \mathcal{A}_1, \ldots, \mathcal{A}_k \) is inconsistent. In this paper, we compute discrete invariants of algebraic varieties defined by systems of equations which are generic in the set of consistent system with support in \( \mathcal{A}_1, \ldots, \mathcal{A}_k\) by reducing the question to the Newton polyhedra theory. Unlike the classical situation, not only the Newton polyhedra of \(f_1,\dots,f_k\), but also the supports \(\mathcal{A}_1,\dots,\mathcal{A}_k\) themselves appear in the answers.

Soit \( \mathcal{A}_1, \ldots, \mathcal{A}_k \) un ensemble fini dans \( \mathbb{Z}^n \) et soit \( Y \subset (\mathbb{C}^*)^n \) une variété algébrique définie par un système d’équations \[f_1 = \ldots = f_k = 0,\] où \( f_1, \ldots, f_k \) sont les polynômes de Laurent avec support dans \(\mathcal{A}_1, \ldots, \mathcal{A}_k\). Supposant que \( f_1, \ldots, f_k \) soient suffisamment génériques, la théorie du polyèdre de Newton calcule les invariants discrets de \( Y \) en fonction du polyèdre de Newton de \( f_1, \ldots, f_k \). Il peut sembler que le système avec support fixe \( \mathcal{A}_1, \ldots, \mathcal{A}_k \) est inconsistent. Dans ce papier, nous calculons les invariants discrets des variétés algébriques définies par des systèmes d’équations qui sont génériques dans l’ensemble des systèmes cohérents avec support dans \( \mathcal{A}_1, \ldots, \mathcal{A}_k\) en réduisant la question à la théorie du polyèdre de Newton. Contrairement à la situation classique, non seulement le polyèdre de Newton de \(f_1,\dots,f_k\), mais aussi les supports \(\mathcal{A}_1,\dots,\mathcal{A}_k\) eux-mêmes apparaissent dans la solution.

Renormalization of Unicritical Analytic Circle Maps
C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (3) 2017, pp. 77-89
Michael Yampolsky (Received: 2016/09/26, Revised: 2016/12/23)

Show AbstractHide Abstract

In this paper we generalize renormalization theory for analytic critical circle maps with a cubic critical point to the case of maps with an arbitrary odd critical exponent by proving a quasiconformal rigidity statement for renormalizations of such maps.

Dans cet article on généralise la théorie de la renormalisation pour les transformations criticales analytiques du circle à point critical cubique au cas de transformations à exposant critical impair arbitraire, en démontrant une affirmation de rigidité quasi-conforme.

Polynomial Power Residue Symbols and $q$-resultants
C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (2) 2017, pp. 60-66
Yoshinori Hamahata (Received: 2016/03/17, Revised: 2016/05/22)

[+ show]Hide Abstract

We establish a relation between polynomial power residue symbols and \(q\)-resultants of \(\mathbb{F}_q\)-linear polynomials. We then establish the \(q-1\)-st power reciprocity law.

On établit une relation entre le symbole de résidu de puissances en caractéristique \(p\) et le \(q\)-résultant de deux \(\mathbb{F}_q\)-polynômes linéaire. Alors on démontre la loi de réciprocité des puissances \(q-1\)-èmes.

Cauchy Problem on Two Characteristic Hypersurfaces for the Einstein-Vlasov Scalar Field Equations in Temporal Gauge
C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (2) 2017, pp. 45-59
Marcel Dossa; Jean Baptiste Patenou (Received: 2015/12/01, Revised: 2016/05/16)

[+ show]Hide Abstract

In this paper, we consider the initial value problem for the Einstein-Vlasov scalar field equations in temporal gauge, where the initial data are prescribed on two characteristic smooth intersecting hypersurfaces. From a suitable choice of some free data, the initial data constraints’s problem is solved globally, then the evolution problem relative to the deduced initial data is solved locally in time.

Dans cet article, on considère le problème de Cauchy pour les équations d’Einstein-Vlasov-Champ scalaire en jauge temporelle, dans le cas où les données initiales sont préscrites sur deux hypersurfaces caractéristiques régulières sécantes. A partir d’un choix judicieux de certaines données indépendantes, le problème des contraintes initiales est globalement résolu, et ensuite le problème de l’évolution relatif aux données initiales déduites est résolu localement dans le temps.

Absence of Non-commutative Matrix Observables for q-State Potts Models
C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (1) 2017, pp. 36-44
James McVittie (Received: 2015/12/28, Revised: 2016/03/02)

Show AbstractHide Abstract

This article is an expository work introducing the subject of lattice models in statistical physics and the types of observables that can be used to prove convergence, as well as a proof for the q-state Potts model showing that non-commutative matrix observables do not exist.

Cet article est une introduction au sujet des modèles sur réseau en physique statistique et les types d’observables qui peuvent être utilisées pour démontrer la convergence, et aussi une démonstration qu’il n’existe pas d’observable matricielle non-commutative pour le modèle “q-state Potts”.

Comments Related to Infinite Wedge Representations
C. R. Math. Rep. Acad. Sci. Canada Vol. 39 (1) 2017, pp. 13-35
Nathan Grieve (Received: 2016/06/30, Revised: 2016/11/07)

[+ show]Hide Abstract

We study the infinite wedge representation and show how it is related to the universal central extension of \(g[t,t^{-1}]\), the loop algebra of a complex semi-simple Lie algebra \(g\). We also give an elementary proof of the boson-fermion correspondence. Our approach to proving this result is based on a combinatorial construction combined with an application of the Murnaghan-Nakayama rule.

Nous étudions l’algèbre extérieure en dimension infinie et montrons comment elle est reliée à l’extension centrale universelle de \(g[t,\!t^{-1}]\), l’algèbre de lacets sur une algèbre de Lie \(g\) semi-simple complexe. De plus, nous donnons une preuve élémentaire de la correspondance boson-fermion. Pour ce faire, nous utilisons une construction combinatoire, ainsi que la règle de Murnaghan-Nakayama.

  • 1
  • 2
  • Next Page »

 Volume / Issue

Most used Keywords

algebraic number theory approximation property automorphisms Bessel functions Boson-fermion correspondence C*-algebra Carmichael number center problem Chebyshev transform classification Classification of simple C*-algebras composition operators continued fractions Cuntz Semigroup elliptic curves fixed point Fourier transform function fields. functoriality general relativity generic property ideals indefinite inner product inductive limits of sub-homogeneous C*- algebras Irrational rotation algebra J-Hermitian matrix K-theory Kahler manifolds L-functions maximal ideal space nonexpansive mapping numerical range orthogonal polynomials Predual space prime number property SP Renormalization rotation algebras Salem number semi-reciprocal polynomials tracially approximate splitting interval algebras unbounded traces uniqueness Weak Markov set Whitney problems

Most used AMS

05C05 11A07 11A55 11B37 11B68 11D09 11D25 11D41 11E04 11F11 11F66 11F67 11G05 11R09 11R11 13B25 14J26 14M25 14P10 17B37 17B67 19K14 19K56 26A51 30C15 30H05 35B 37E10 37E20 37F25 39B72 42C05 43A07 46B20 46L05 46L35 46L40 46L55 46L80 47H10 53B25 53C55 54C60 60F10 83C05

Be notified of new issues

Copyright © 2023 · The Royal Society of Canada | La Société royale du Canada · Log in
ISSN: 2816-5810 (Online)