Mathematical Reports - Comptes rendus mathématiques

of the Academy of Science | de l'Académie des sciences

  • Home
  • Articles
  • News
  • Editorial Board
  • General Information
    • General Information
    • Preparation of Manuscripts
    • Subscription Information
    • FAQ
    • Help
 

Vol.43 (2021) — 7 results found.

Show all abstractsHide all abstracts

The Bundle of KMS State Spaces for Flows on a Unital AF C*-algebra
C. R. Math. Rep. Acad. Sci. Canada Vol. 43 (4) 2021, pp. 103-121
George A. Elliott; Klaus Thomsen (Received: 2021/09/21)

[+ show]Hide Abstract

It is shown that, for any unital simple infinite-dimensional AF algebra, the KMS-state bundle for a one-parameter automorphism group is isomorphic to an arbitrary proper simplex bundle over the real line with (as is necessary) fibre at (inverse temperature) zero isomorphic to the trace simplex.

On démontre que, pour toute C*-algèbre AF simple à élément unité et à dimension infinie, le faisceau d’états KMS pour un grouped’automorphismes à un paramètre est isomorphe à un faisceau de simplices propre arbitraire sur la ligne réelle tel que (nécessairement) le fibre sur la température inverse zéro est isomorphe au simplex tracial.

A Modification of the Effros-Handelman-Shen Theorem with $\mathbb{Z}_2$ actions
C. R. Math. Rep. Acad. Sci. Canada Vol. 43 (3) 2021, pp. 87-102
Bit Na Choi; Andrew J. Dean (Received: 2021/04/08)

[+ show]Hide Abstract

We show that a \(\mathbb{Z}_2\) action on a lattice-ordered dimension group will arise as an inductive limit of \(\mathbb{Z}_2\) actions on simplicial groups. The motivation for this study is the range of invariant problem in Elliott and Su’s classification of AF type \(\mathbb{Z}_2\) actions. We modify the proof of the Effros-Handelman-Shen theorem to include \(\mathbb{Z}_2\) actions.

Nous montrons qu’une action de \(\mathbb{Z}_2\) sur un groupe de dimension ordonné par treillis apparaît comme une limite inductive d’actions de \(\mathbb{Z}_2\) sur des groupes simpliciaux. La motivation de cette étude est le problème de la gamme de l’invariant dans la classification d’Elliott et de Su des actions de \(\mathbb{Z}_2\) de type AF. Nous modifions la preuve du théorème d’Effros-Handelman-Shen pour inclure les actions de \(\mathbb{Z}_2\).

KAM-renormalization and Herman Rings for 2D Maps
C. R. Math. Rep. Acad. Sci. Canada Vol. 43 (2) 2021, pp. 78-86
Michael Yampolsky (Received: 2021/03/14, Revised: 2021/04/21)

[+ show]Hide Abstract

In this note, we extend the renormalization horseshoe we have recently constructed with N. Goncharuk for analytic diffeomorphisms of the circle to their small two-dimensional perturbations. As one consequence, Herman rings with rotation numbers of bounded type survive on a codimension one set of parameters under small two-dimensional perturbations.

On étend le fer à cheval de renormalisation récemment construit avec N. Goncharuk pour les difféomorphismes analytiques du cercle à leurs petites perturbations à deux dimensions. Il suit que les anneaux de Herman à nombre de rotation de type borné survivent sur un ensemble de paramètres à codimension un sous petites perturbations à deux dimensions.

A Weighted Average of $L$-functions of Modular Forms
C. R. Math. Rep. Acad. Sci. Canada Vol. 43 (2) 2021, pp. 63-77
M. Manickam; V. Kumar Murty, FRSC; E. M. Sandeep (Received: 2021/03/09, Revised: 2021/04/14)

[+ show]Hide Abstract

We consider a kernel function introduced by Kohnen and prove an asymptotic formula for a weighted sum of \(L\)-functions of modular forms.

On considère une fonction noyau introduite par Kohnen et démontre une formule asymptotique pour une somme pondérée de fonctions L de forms modulaires.

A Note on $\mathfrak{su}(2)$ Models and the Biorthogonality of Generating Functions of Krawtchouk Polynomials
C. R. Math. Rep. Acad. Sci. Canada Vol. 43 (2) 2021, pp. 46-62
Luc Vinet, FRSC; Alexei Zhendanov (Received: 2021/04/03)

[+ show]Hide Abstract

Eigenvalue problems on irreducible \(\mathfrak{su}(2)\) modules and their adjoints are considered in the Bargmann, Barut-Girardello and finite difference models. The biorthogonality relations that arise between the corresponding generating functions of the Krawtchouk polynomials are sorted out. A link with Padé approximation is made.

Des problèmes aux valeurs propres sur les modulesirréductibles de \(\mathfrak{su}(2)\) et leurs adjoints sont examinés dans les modèles de Bargmann, Barut–Girardello et aux différences finies. Les relations de biorthogonalité qui apparaissent entre les fonctions génératrices correspondantes des polynômes de Krawtchouk sont identifiées. Un lien avec l’approximation de Padé est fait.

A Remark on the Functoriality of the Connes-Takesaki Flow of Weights
C. R. Math. Rep. Acad. Sci. Canada Vol. 43 (1) 2021, pp. 28-44
George A. Elliott (Received: 2020/09/16, Revised: 2021/02/23)

[+ show]Hide Abstract

The flow of weights was introduced by Connes and Takesaki as a functor on the category of von Neumann algebras with isomorphisms as maps. While it is easy to see that this functor cannot be extended to the category of all von Neumann algebra homomorphisms, it is in fact possible to extend it to a certain extent. This can also be done, fairly extensively, for the Falcone and Takesaki non-commutative flow of weights.

Le flot des poids a été introduit par Connes et Takesaki comme foncteur sur la catégorie des algèbres de von Neumann avec isomorphismes comme flèches. On peut étendre ce foncteur jusqu’à un certain point dans les directions et covariante et contravariante. Le foncteur flot des poids non-commutatif peut aussi s’étendre, bien entendant pas aux homomorphismes arbitraires.

$C^0$ Symplectic Topology
C. R. Math. Rep. Acad. Sci. Canada Vol. 43 (1) 2021, pp. 1-27
Francois Lalonde (Received: 2020/10/30, Revised: 2020/11/04)

[+ show]Hide Abstract

In this paper, I explain the emergence of Symplectic geometry and Symplectic topology, as it occurred historically, from three sources: classical and quantum physics, complex Algebraic geometry, and String theory. Symplectic topology is nowadays one of the most fascinating subjects in mathematics, and has reached since the 1980’s a maturity that deserves the attention of all mathematicians and physicists. It combines topology, geometry, non-linear partial differential equations or relations, \(A^{\infty}\) algebras, and String theory in a powerful setting that addresses some of the most elusive questions of our times. It is made of soft \(h\)-principles coupled with hard transcendental, rigid, moduli spaces of solutions to PDE’s on manifolds. I will end the paper with some conjectures in Symplectic topology, after explaining the difference between smooth and \(C^0\) Symplectic topology.

Dans cet article, j’explique l’émergence de la géométrie symplectique et de la topologie symplectique, en suivant leur naissance et leur évolution au cours des siècles, à partir de trois sources: la physique classique et quantique, la géométrie algébrique complexe, et la théorie des cordes. La topologie symplectique est aujourd’hui l’un des domaines les plus fascinants de la recherche mathématique mondiale et a atteint, depuis les années 1980 une maturité qui mérite l’attention de tous les mathématiciens et physiciens. Elle rassemble la topologie, la géométrie, les équations aux dérivées partielles non-linéaires, les \(A^{\infty}\)-algèbres et la théorie des cordes dans une théorie puissante qui s’adresse aux problèmes les plus subtils de notre époque. Elle est faite du \(h\)-principe topologique, une théorie “soft”, couplée à un vaste ensemble d’espaces de modules d’EDP sur les variétés, que l’on peut qualifier de “hard” ou transcendental. Je conclurai cet article avec quelques conjectures en topologie symplectique après avoir expliqué la différence entre les topologies symplectiques lisse et \(C^0\).

 Volume / Issue

Most used Keywords

algebraic number theory approximation property automorphisms Bessel functions Boson-fermion correspondence C*-algebra Carmichael number center problem Chebyshev transform classification Classification of simple C*-algebras composition operators continued fractions Cuntz Semigroup elliptic curves fixed point Fourier transform function fields. functoriality general relativity generic property ideals indefinite inner product inductive limits of sub-homogeneous C*- algebras Irrational rotation algebra J-Hermitian matrix K-theory Kahler manifolds L-functions maximal ideal space nonexpansive mapping numerical range orthogonal polynomials Predual space prime number property SP Renormalization rotation algebras Salem number semi-reciprocal polynomials tracially approximate splitting interval algebras unbounded traces uniqueness Weak Markov set Whitney problems

Most used AMS

05C05 11A07 11A55 11B37 11B68 11D09 11D25 11D41 11E04 11F11 11F66 11F67 11G05 11R09 11R11 13B25 14J26 14M25 14P10 17B37 17B67 19K14 19K56 26A51 30C15 30H05 35B 37E10 37E20 37F25 39B72 42C05 43A07 46B20 46L05 46L35 46L40 46L55 46L80 47H10 53B25 53C55 54C60 60F10 83C05

Be notified of new issues

Copyright © 2023 · The Royal Society of Canada | La Société royale du Canada · Log in
ISSN: 2816-5810 (Online)