Mathematical Reports - Comptes rendus mathématiques

of the Academy of Science | de l'Académie des sciences

  • Home
  • Articles
  • News
  • Editorial Board
  • General Information
    • General Information
    • Preparation of Manuscripts
    • Subscription Information
    • FAQ
    • Help
 

Vol.44 (1) 2022 — 2 results found.

Show all abstractsHide all abstracts

On Duistermaat-Heckman Measure for Filtered Linear Series
C. R. Math. Rep. Acad. Sci. Canada Vol. 44 (1) 2022, pp. 16-32
Nathan Grieve (Received: 2021/09/07)

[+ show]Hide Abstract

We revisit work of S. Boucksom, C. Favre, and M. Jonsson (J. Algebraic Geom. 18 (2009), no. 2, 279–308); Boucksom and H. Chen (Compos. Math. 147 (2011), no. 4, 1205–1229); and S. Boucksom, A. Küronya, C. Maclean, and T. Szemberg (Math. Ann. 361 (2015), no. 3–4, 811–834). The key point is to associate a Duistermaat-Heckman measure to a filtered big linear series on a given projective variety. The expectation of the measure admits a description via the theory of Newton-Okounkov bodies. Such considerations have origins in symplectic geometry. They have applications for \(\mathrm{K}\)-stability and Diophantine arithmetic geometry of projective varieties.

Nous revisitons les travaux de S. Boucksom, C. Favre, and M. Jonsson (J. Algebraic Geom. 18 (2009), no. 2, 279–308); Boucksom et H. Chen (Compos. Math. 147 (2011), no. 4, 1205–1229); et S. Boucksom, A. Küronya, C. Maclean, et T. Szemberg (Math. Ann. 361 (2015), no. 3–4, 811–834). Nous étudions deux résultats, qui sont à l’intersection de la \(\mathrm{K}\)-stabilité, de la géométrie arithmétique Diophantienne, et de la théorie des corps convexe de Newton-Okounkov. Ils se rapportent à des filtrations de grands systèmes linéaires sur des variétés projectives et à l’existence de une mesure de Duistermaat-Heckman. La mesure de Duistermaat-Heckman vient de la géométrie symplectique. L’espérance de la mesure peut être calculée par la théorie de Newton-Okounkov.

K-Theory and Traces
C. R. Math. Rep. Acad. Sci. Canada Vol. 44 (1) 2022, pp. 1-15
George A. Elliott (Received: 2021/09/16, Revised: 2021/12/19)

[+ show]Hide Abstract

It is shown that for a unital C*-algebra, what is sometimes referred to as the Elliott invariant—loosely speaking, K-theory and traces— i.e., the order-unit K\(_0\)-group, the K\(_1\)-group, and the trace simplex, paired in the natural way with K\(_0\), can be expressed purely in terms of K-theory, with the trace simplex and its pairing with K\(_0\) recoverable in a simple way (using polar decomposition) from algebraic K\(_1\), defined as in the purely algebraic context using invertible elements rather than just unitaries.

L’invariant naïf d’Elliott, qui est à la base de la classification complète récente d’une énorme classe de C*-algèbres simples (celles qui sont de dimension nucléaire finie, qui sont séparables, et qui satisfont à l’UCT), peut s’exprimer entièrement dans le cadre de K-théorie algébrique.

 Volume / Issue

Most used Keywords

algebraic number theory approximation property automorphisms Bessel functions Boson-fermion correspondence C*-algebra Carmichael number center problem Chebyshev transform classification Classification of simple C*-algebras composition operators continued fractions Cuntz Semigroup elliptic curves fixed point Fourier transform function fields. functoriality general relativity generic property ideals indefinite inner product inductive limits of sub-homogeneous C*- algebras Irrational rotation algebra J-Hermitian matrix K-theory Kahler manifolds L-functions maximal ideal space nonexpansive mapping numerical range orthogonal polynomials Predual space prime number property SP Renormalization rotation algebras Salem number semi-reciprocal polynomials tracially approximate splitting interval algebras unbounded traces uniqueness Weak Markov set Whitney problems

Most used AMS

05C05 11A07 11A55 11B37 11B68 11D09 11D25 11D41 11E04 11F11 11F66 11F67 11G05 11R09 11R11 13B25 14J26 14M25 14P10 17B37 17B67 19K14 19K56 26A51 30C15 30H05 35B 37E10 37E20 37F25 39B72 42C05 43A07 46B20 46L05 46L35 46L40 46L55 46L80 47H10 53B25 53C55 54C60 60F10 83C05

Be notified of new issues

Copyright © 2023 · The Royal Society of Canada | La Société royale du Canada · Log in
ISSN: 2816-5810 (Online)